V2V EdTech LLP | SEN (CO/IT/AIML) (22413) | VIMP QUESTIONS

(@)

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:
« Diplomain All Branches, All Subjects
« Degree in All Branches, All Subjects
« BSCIT/CS
« Professional Courses

O +91 9326050669 @ V2V EdTech LLP
v2vedtech.com ® vavedtech

1

ADMISSION STARTED FOR ONLINE / OFFLINE BATCH of FY/SY/TY - Diploma

All Courses : CHECK NOW YOUTUBE : SUBSCRIBE NOW INSTA : FOLLOW NOW
Download V2V APP on Playstore for more FREE STUDY MATERIAL

Contact No : 9326050669 / 93268814281

https://hnwhp.courses.store/
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp

i

1 of 122 - 4 70%

Software Engineering

Sub Code : 22413

ﬁl

MSETE | SCHEME PATTERN 15

S. Y. DIPLOMA SEM IV 'l
COMPUTER ENGINEERING GROUP - .
& INFORMATION TECHNOLOGY | EDITION i 2020

(CO/CM/IF/CW)

SOLVED MSBTE PAPERS

¢ SUMMER 2014 * WINTER 2014 * SUMMER 2015 ® WINTER 2015
¢ SUMMER 2016 * WINTER 2016 e SUMMER 2017 © WINTER 2017
¢ SUMMER 2018 ® Sample Paper (I Scheme) ® WINTER 2019 (I Scheme)

= TECHNICAI

SUBJECT CODE : 22413

As per Revised Syllabus of

MSBTE - I SCHEME

S.Y. Diploma Semester - IV

Computer Engineering Group & Information Technology

(CO/CM/IF/ QW)

SOFTWARE ENGINEERING

Anuradha A. Puntambekar
M.E. (Computer)

Formerly Assistant Professor in
PE.S. Modern College of Engineering,
Pune

Yogesh S. Gunijal

M. Tech (Computer Science and Engineering)
1/C Principal,
JCE!'s Jaihind Polytechnic Kuran, Pune

Narendra S. Joshi
M.E. {CSE), Ph.D. {Pursuing),
HOD (Computer Engineering Department),
Assistant Professor,
Sandip Foundation's, Sandip Institute of Polytechnic (SIP),
Nashik

Yogesh B. Patil

M.Tech (L.T.), B.E. (L.T))
HOD Computer Department,
G.M.Chaudhar Polytechnic, Shahada.

~— TEGH ;
NIGAL

PUBLICATIONS

SINCE 1993 An Up-Thrust for Knowledge

((((((((gg ;

(i)

pf 122 - 4 0% -

SOFTWARE ENGINEERING

Subject Code : 22413

S.Y. Diploma Semester - IV
Computer Engineering Group & Information Technology (CO / CM / IF / CW)

First Edition : January 2019
Second Revised Edition : January 2020

© Copyright with A. A, Puntambekar

All publishing rights (printed and ebook version) reserved with Technical Publications. No part of this book
should be reproduced in any form, Electronic, Mechanical, Photocopy or any information storage and
retrieval system without prior permission in writing, from Technical Publications, Pune.

Published by :

: T[c““lc“‘: Amit Residency, Office No.1, 412, Shaniwar Peth, Pune - 411030, M.S. INDIA
= PUBLICATIONS | Ph.: +91-020-24495496/97, Telefax : +91-020-24495497
L""‘"" AolyTnut v Kooty) Email - sales@technicalpublications.org Website : www.technicalpublicotions.org

Printer :

Yaogiraj Printers & Binders

StNo. 10/1A,

Ghule Industrial Estate, Nanded Village Road,
Tal. - Haveli, Dist. - Pune - 411041

Price : T 100/- |
ISBN 978-93-332-0046-2

7893331200462

MSBTE |

9789333200462 [2] (ii)

bf 122

- | | 70% $

PREFACE

The importance of Software Engineering is well known in various engineering fields.
Overwhelming response to our books on various subjects inspired us to write this book.
The book is structured to cover the Rey aspects of the subject Software Engineering.

The book uses plain, lucid language to explain fundamentals of this subject. The book
provides logical method of explaining various complicated concepts and stepwise
methods to explain the important topics. Each chapter is well supported with necessary
illustrations, practical examples and solved problems. All chapters in this bookR are
arranged in a proper sequence that permits each topic to build upon earlier studies. All
care has been taken to make students comfortable in understanding the basic concepts
of this subject.

Representative questions have been added at the end of each section to help the
students in picRing important points from that section.

The book not only covers the entire scope of the subject but explains the philosophy of
the subject. This makes the understanding of this subject more clear and makes it more
interesting. The book will be very useful not only to the students but also to the subject
teachers. The students have to omit nothing and possibly have to cover nothing more.

We wish to express our profound thanks to all those who helped in making this book a
reality. Much needed moral support and encouragement is provided on numerous
occasions by our whole family. We wish to thank the Publisher and the entire team of
Technical Publications who have taken immense pain to get this book in time with
quality printing.

Any suggestion for the improvement of the book will be acknowledged and well
appreciated.

Authors
A. A. Puntambekayr
Yogesh S. Gunjal
Narendva 5. [Joshi
Yogesh B. Patil

Dedicated to Cjod

(iii)

SYLLABUS

Software Engineering (22413)

Teaching Examination Scheme
Scheme
L|T|p| Credit Theory Practical
(L+T+P)
Paper ESE PA Total ESE PA Total
Hrs.
Max | Min | Max | Min Max Min Max Min | Max Min Max | Min
3|1-12 5 3 70 28 | 307 00 100 40 25@ 10 25 10 50 20
Unit Unit Outcomes (UOs) Topics and Sub - topics
(in cognitive domain)
Unit - 1 la. Suggest the attributes that [1.1 Software, Software Engineering as layered
Software match with standards for approach and its characteristics, Types of
Development the given software software.
Process application. 12 Software development framework.
b lsefct:".n"jen(_il :he frelev‘::t 1.3 Software Process Framework, Process
‘:‘.), e ub;on o ’.ue models : Perspective Process Models,
SIVERL o DO Al Specialized Process Models.
justification. : ; ool ;
1.4 Agile Software development : Agile Process
lc. Select the relevant software Bd its i ' ¢ ;:‘}t 3 P h'] 2 s:
- jel for the wiven and its importance, Extreme Programming,
pTOECI‘h.\ mo"t't _ 5 ith Adaptive Software Development, Scrum,
.Prfi_’f.e‘mt. Sfatement —wl Dynamic Systems Development Method
JURREAIEN: (DSDM), Crystal.
1d. Suggest the relevant | 4 5 gajection criteria for software process
activities in Agile siodal
Development Process in the ¢
given situation with
justification.
Unit - 11 2a. Apply the principles of |21 Software Engineering Practices and its
Software software engineering for the importance, Core principles.
Requirement given problem. 2.2 Communication Practices, Planning
Engineering 2b. Choose the relevant Practices, Modelling practices, construction
'requirement engineering’ practices, software deployment (Statement
steps in the given problem. and meaning of each principle for each
2c. Represent the 'requirement practice),
engineering' model in the | 23 Requirement Engineering : Requirement
given problem. Gathering and Analysis, Types of
3, irements - 1 &
2d. DPrepare SRS for the given rtqu"’.cmc.m“ (Functional, .lmduc.t’
roblén, organizational, External Requirements),
P Eliciting Requirements, Developing Use -
cases, Building requirement models,
Requirement Negotiation, Validation.
24 Software Requirement Specification : Need

of SRS, Format, and its Characteristics.

fiv)

Unit - I 3a. Identify the elements of [3.1 Translating Requirement model into design
Software analysis model for the given model : Data Modelling.
Modelling and software requirements. 3.2 Analysis Modelling : Elements of Analysis
Design 3b. Apply the specified design model.
fcah{ro _for q “.sottwnrc 33 Design modelling : Fundamental Design
Tequirenipnis madeting Concepts (Abstraction, Information hiding,
3c. Represent the specified Structure, Modularity, Concurrency,
problem in the given design Verification, Aesthetics).
SRR 3.4 Design notations Data Flow Diagram
3d. Explain the given (DFD), Structured Flowcharts, Decision
characteristics of software Tables.
MEIUng: 3.5 Testing - Meaning and purpose, testing
3e, DPrepare test cases for the methods - Black Box and White - box,
siven module. Level of testing - Unit testing,.
8 8 8
3.6 Test Documentation - Test Case Template,
test plan, Introduction to defect report, test
summary report.
Unit -1V 4a. Estimate the size of the The management spectrum - 4P's.
Software Project software product using the | y5 \atrics for Size Estimation : Line of Code
Estimation given method. (LoC), Function Points (FP).
o l?sft:‘n"me thie 4 C;’St .Of ::t 43 Project Cost Estimation Approaches
‘i‘.)_ TS pre ;’c ‘tll:cl:ig o2 Overview of Heuristic, Analytical, and
BAVEN STIPALIOn G ’ Empirical Estimation.
dc. Elx‘a(‘l:ate t(}:t?t“ :::f Ofu ::; 44 COCOMO (Constructive Cost Model),
v s v S =
- S 3 - COCOMO 1L
CoCoMo model.
‘) ‘ 4.5 Risk Management : Risk Identification, Risk
4d. prP]-‘ thc RMMM strategy Assessment, Risk Containment, RMMM
in Identified risks for the : :
2 : strategy.
given software development :
problem.
Unit -V 5a. Use the given scheduling [5.1 Project Scheduling : Basic Principles, Work
Software Quality technique for the identified breakdown structure, Activity network and
ASsurante and: project. critical path Method, Scheduling tachniques
Security 5b. Draw the activity network JEN,PERT):
for the given task. 52 Project Tracking : Timeline charts, Earned
7 B v
5c. Prepare the timeline chart / Value Analysis, Gantt Charts.
Gantt chart to track progress | 5.3 Software Quality Management vs. Software
of the given project. Quality Assurance
5d. Describe the given Software Phases of Software Quality Assurance
Quality Assurance (SQA) Planning, Activities, audit, and review.
activity. 54 Quality Evaluation standards : Six Sigma,
5e. Describe features of the 1ISO for software, CMMI : Levels, Process
given software evaluation areas.
standard. 5.5 Software Security, Introduction to DevOps,

Secure software engineering.

fv)

TABLE OF CONTENTS

Chapter -1 Software Development Process
(1-1)to(1-16)
1.1 Definition of Software and Software Engineering . .
...................................... 1-1
1.2 Software as Layered Approach 1-1
1.3 Characteristics of Software Engineering 1-2
L4 Types of Sofware & i i sdidiiisv 1-3
1.5 Software Development Framework. 1-3
1.6 Software Process Framework 1-4
LT PAOCERS MDA oo e R R e i 1-5
1.7.1 Perspective Process Model 1-5
1.7.1.1 WaterfallModel 1-5
1.7.1.2 RAD Model (Incremental Model), .. 1-6
1:7:1:3: Spival Model-:: 2. covmeaasmmanmg 1-7
1.7.2 Specialized Process Model 1-9
1.7.2.1 Component Based Development....1-9
1.7.2.2 Formal Methods Model 1-9
1.8 Agile Software Development. 1-10
1.8.1 Agile Process and its Importance 1-10
1.8.2 Extreme Programming 1-11
1.8.3 Adaptive Software Development 1-12
1584 SSCRUIM: s s S I Sy 1-12

1.8.5 Dynamic System Development Method

(DSDM) .o 1-14
ERE OVRHLL o o ey ez sapemoxons 1-14

1.9 Selection Criteria for Software Process Model 1 - 15

Unit - II

Chapter -2 Software Requirement
Engineering (2-1)to (2-18)

Part | : Software Engineering Practices

2.1 Software Engineering Practices and its Importance.

(vi)

2.2

24
2.5
2.6
2.7

28

2.9

2.10

2.11
2.12

...................................... 2-1
COre RRnCIpIes vt e s oo 2-1
Communication Practices ., 2-2
PlAbning Practices: .« couvavss svvninde b wsis 2-2
Modeling Practices 2-3
Construction Practices 2-4
Software Deployment ., 2-5

Part Il : Requirement Engineering

Requirement Gathering and Analysis. 2-5

Rk TCRPMON: wrvroooi s ormmin sy w simrosiy e 2-6
2:8.:2: BHCHALION: v oo ism e ise e s s 2-6
2.8:3; Elaboration: .. vsum oo seasiomsiag 2-6
2:8.4' Negotiation::eu sl smaiRuaiss 2-6
2:8:5: SpeTTIoatiORn: A R 2-6
286 Vahdation.......................... 2-6
2.8.7 Requirement Management............. 2-7
Types of Requirements 2-7
2.9.1 Functional Requirements 2-7
2.9.1.1 Problems Associated with Requirements.
............................ 2-7
2.9.2 Non Functional Requirements 2-8
2.9.2.1 Types of Non Functional Requirements
................................. 2-8
2.9.2.2 Domain Requirements. 2-9
2.9.3 Difference between Functional and Non
Functional Requirements. 2-10
Eliciting Requirements . ., 2-10

2.10.1 Collaborative Requirements Gathering .. 2- 10

2.10.2 Quality Function Deployment 2-11
2103 UUsage SCENANIOS uivunmswnmnsnm s 2-12
2.10.4 Elcitation Work Product. 2-12
Developing Use Cases o wvi-warigs s 2-12
Building Requirement Models 2-15
2.12.1 Overall Objectives.c.cvvniunn 2-16

2.13

2.14
2.15
2.16

Definition of Software Requirement

Specification:(SRS).: viivaiad s wvsvvavs 2-16
Need for SRS o ivwunmsvimmeamniysn 3 2-16
B O A s s S S R SR ST 2-16
ChAraCtOrISHES orcvs s TS 5% 2-18

Part lll : Software Requirement Specification

Unit - III

Chapter -3 Software Modelling and Design

3.1

3.1.2 Cardinality and Modality 3-2
AnalysisModeling 3-3
3.2.1 Elements of Analysis Model........... 3-3
Design:Modelinmosssamnassrnsanmensy 3-4
3.3.1 Fundamental Design Concepts 3-4
Design NOAHONS. . & xv.a v cmiicanmiam i 3-6
3.4.1 DataFlow Diagram (DFD). 3-6
3.4.1.1 Data Flow Diagram 3-6
342 Structured Flow Chart. 3-15
343 DecisionTables...............onn. 3-17
[U A P S e AR S AL G (D 3-18
3.5.1 Meaning and Purpose 3-18
3.5.2 Black Box and White Box Testing 3-18
35537 LeweloL-Teshng <z viiae s vissesi 3-19
3.5.3.1 Unit Testing i Y
3.5.4 Test Documentation 3-21
3.54.1 Test Case Template 3-21
3:5:4:2 TestPha: oz s G i 3-22
3.5.4.3 Introduction to Defect Report. 3-23
3.5.4.4 Test Summary Report, v 23
Unit - IV
Chapter -4 Software Project Estimation
(4 -1) to (4 - 20)

(3-1)to (3 - 24)

Translating Requirement Model into

Design Model iv.icvnmmsvamemsumsvaias 3-1
3.1.1 DataModeling. 3-2

3.1.1.1 Data Object, Attributes and Relationships

n

h
‘
w

)
n =

wn
>

Management Spectrum. 4-1
4.1 ThePeople:«a:ow vaenmmam wnresm@ e snieis 4-1
412 TheProduct: .o v s s 4-1
4:1:3: The Process: iz s e an e vaian sy 4-1
I) | S e S s U S e Sy O 4-2
Metrics for Size Estimation 4.2
4.2.1 LOC based Estimation. 4-2
4.2,2 Function POIME. . <o v srivme vcu siisie 4-3
Project Cost Estimation Approach 4-5
4.3.1 Overview of Heuristic Technique 4-6
4.3.2 Analytical and Empirical Estimation. 4-6

4.3.2.1 Halstead's Software Science 4-06
COCOMUY;: o o e m S a siess 4-8
COCOMOIN e, 4-11
Risk Management ; ...-v e vaesoe s 4-15
4.6.1 Software Risks 4-15
4.6.2 Risk Identification 4-16
4.6 3 RISK PLOICCHON ;- ciiossmsirie mmaimssi e mmion 4-17
4.6.4 Risk Assessment. 4-17
4.6.5 Risk Containment. 4-18
466 RMMM Strategyooiiiiiiuann 4-18

Chapter -5 Software Quality Assurance and

Security (5-1)to (5-14)
Project Scheduling .. ows ssvusmvvnnvasssnes. 5-1
o1z, ZBaSICPHNCIPIRY: vcr e parsciscvimparscnes 5-1
5.1.2 Work Breakdown Structure 5-1

5.1.3 Activity Network and Critical Path Method 5 - 2

5.1.4 Scheduling Techniques................ 5-4
Project Tracking. ... s soiin i b 5-5
5.2.1 Time Line Chart (Gantt Chart) 5-5
5.2.2 Eamed Value Analysis, 5-6
Software Quality Management Vs,

Software Quality Assurance 5-7
Phases of Software Quality Assurance5-8
Software Quality Control. 5-9
Quality Evaluation Standards5-9
S0 SAR SN s i s s A e R 5-9

TECHNICAL PUBLICATIONS - An up thrust for knowledge

pf 122 - 4 70%

(viii)

§5:6:2 ISO for:SORWAETET.. oo i vasisiission 5-10
563 CMMI 5-11
5:7 Software Secunty: s imiamaiaans i 5-12
5.8 Introductionto DEVOPs 5-12
5.9 Secure Software Engineering. 5-13

Solved Sample Test Papers (S-1)to (S-2)

Solved Sample Question Paper
(S-3)to (S -4)

s 2l TECHNICAL PUBLICATIONS - An up thrust for knowledge
s

122

- 4 0%

UNIT- |

Software Development Process

1.1 | Definition of Software and Software

Engineering
MSBTE : Winter-15, Marks 4

Software : Software is nothing but a collection of

computer programs and related documents that are
intended to provide desired features, functionalities
and better performance.

Software Engineering : “Software engineering is a
discipline in which theories, methods and tools are
applied to develop professional software product.”

Attributes of Good Software : There are some
essential attributes of good software and those are

(1) Maintainability : Sometimes there is a need to
make some modifications in the existing
software. A good software is a software which
can be easily modified in order to meet the
changing needs of the customer.

(2) Usability : It is the ability of the software being
useful. For making the software useful it is
necessary that it should have proper GUI and
documentation.

(3) Dependability : The dependability is a property
that includes reliability, security and safety of
software. In other words the developed software
product should be reliable and safe to use; it
should not cause any damage or destruction.

(@) Efficiency : The software should be efficient in
its performance and it should not waste the
memory.

Board Question

1. State any four attributes of a good software.

MSBTE : Winter-15, Marks 4

(1-1)

1.2 | Software as Layered Approach

.

.

MSBTE : Winter-15, 16, Summer-15, 16, 17, Marks 6

Software engineering is a layered technology. Any
software can be developed using these layered
approaches. Various layers on which the technology
is based are quality focus layer, process layer,
methods layer, tools layer.

A disciplined quality management is a backbone of
software engineering technology.

Process layer is a foundation of software
engineering. Basically, process defines the
framework for timely delivery of software.

In method layer the actual method of
implementation is carried out with the help of
requirement analysis, designing, coding using
desired programming constructs and testing.
Software tools are used to bring automation in
software development process.

Thus software engineering is a combination of
process, methods, and tools for development of
quality software.

Tools

Methods

Processes

Quality management

Fig. 1.2.1

Board Questions
1. Explain software engineering as @ layered
technology approach.

MSBTE : Winter-15, Summer-15,17, Marks 4,
Summer-16, Marks 6

2. Explain software engincering as a layered
technology approach with neat diagramn:.

MSBTE : Winter-16, Marks 4

Software Engineering

Software Development Process

IE Characteristics of Software Engineering
MSBTE : Winter-15, 17, Summer-16, 18, Marks 8

» Software is engineered, not manufactured

1) Software development and hardware

development are two different activities.

2) A good design is a backbone for both the
activities.

3) Quality that
manufacturing phase cannot be removed easily.
On the other hand, during software development

problems occur in hardware

process such problems can be rectified.

4) In both the activities, developers are responsible
for producing qualitative product.

« Software does not ware out

1) In early stage of hardware development process
the failure very high because of
manufacturing defects. But after correcting such

rate 1is

defects the failure rate gets reduced.

2) The failure rate remains constant for some period
of time and again it starts increasing because of
(extreme temperature,

environmental maladies

dusts, and vibrations).

3) On the other hand software does not get affected
from such environmental maladies. Hence ideally
it should have an “idealized curve”. But due to
some undiscovered errors the failure rate is high
and drops down as soon as the errors get
corrected. Hence in failure rating of software the

”

“actual curve” is as shown below :

Failure curves
(Bath tub curves)

|

Fadlure

Fig. 1.3.1

4) During the life of software if any change is
made, some defects may get introduced. This
causes failure rate to be high.

5) Before the curve can return to original steady
state another change is requested and again the
failure rate becomes high.

6) Thus the failure curve looks like a spike. Thus
frequent changes in cause it to
deteriorate.

software

7) Another issue with software is that there are no
spare parts for software. If hardware component
wears out it can be replaced by another
component but it is not possible in case of
software.

8) Therefore software maintenance is more difficult
than the hardware maintenance.

* Most software is custom built rather than being

assembled from components

1) While developing any hardware product firstly
the circuit design with desired functioning
properties is created. Then required hardware
components such as ICs, capacitors and registers
are assembled according to the design, but this is
not done while developing software product.

2) Most of the software is custom built.

3) However, now the software development
approach is getting changed and we look for
reusability of software components.

4) It is practiced to reuse algorithms and data
structures.

5) Today software industry is trying to make library
of reusable components. For example : In today’s
software, GUI is built using the reusable
components such as message windows, pull
down menus and many more such components.

6) The approach is getting developed to use in-built
components in the software. This stream of
software is popularly known as component
engineering.

Board Questions
1. Describe the characteristics of software.
MSBTE : Winter-15, Marks 4

Define software. State three characteristics of

o

software. MSBTE : Summer-16, Marks 4

3. Explain changing nature of software.
MSBTE : Winter-17, Marks 4

4. What is software 7 What are its characteristics ?

MSBTE : Winter-17, Marks 8

“Software

wn

Elaborate the software characteristic

does not wear out”. MSBTE : Summer-18, Marks 4

'?5' TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 1-3

Software Development Process

Types of Software
MSBTE : Winter-16, Summer-16, 17, 18, Marks 6

Based on changing nature of software, various types
of software are defined as follows -

1. System software -
It is collection of programs written to service
other programs.

O

© Typical programs in this category are compiler,
editors and assemblers.
© The purpose of the system software is to
establish a communication with the hardware.
2. Application software -

© It consists of standalone programs that are
developed for specific business need.

O

This software may be supported by database
systems.

3. Engineering / Scientific software -

© This software category has a wide range of
programs from astronomy to volcanology, from
automatic stress analysis to space shuttle orbital
dynamics and from molecular biology to
automated manufacturing.

O

This software is based on complex numeric
computations.

4. Embedded software -

© This category consists of program that can
reside within a product or system.

O

Such software can be used to implement and
control features and functions for the end-user
and for the system itself.

5. Web applications -

© Web application software consists of various
web pages that can be retrieved by a browser.

© The web pages can be developed using
programming languages like JAVA, PERL, CGI,
HTML, DHTML.

6. Artificial Intelligence software -

@ This kind of software is based on knowledge
based expert systems.

© Typically, this software is useful in robotics,
expert systems, image and voice recognition,
artificial neural networks, theorem proving and
game playing.

-

Board Questions
1. State and explain any four types of software.
MSBTE : Summer-16, Marks 4

ho

. Describe any four categories of software.
MSBTE : Winter-16, Marks 4
3. What is software ? What is embedded software ?

MSBTE : Summer-17, Marks 4

4. Elaborate any six types of software considering the

MSBTE : Summer-18, Marks 6

changing nature.

@ Software Development Framework

« The Software Development Life Cycle (SDLC) is the
logical process of developing any system.

» Using SDLC one can develop a system which
satisfies customer needs, can be developed within
the predefined schedule and cost.

Normally the system analyst makes use of software
development life cycle for developing the
information systems.

The SDLC is a linear or sequential model in which
output of previous phase is given as input to next
subsequent stage.

Various phases of software development life cycle
are - (Refer Fig. 1.5.1)

1. Feasibility study : It is initial phase of software
development framework. In this phase, it is
decided whether to built the system or not.

2. Requirement gathering and analysis : The basic
requirements of the software project are
identified and analysed in this phase.

S Feasible solution
Feasibility Study
iy System requirements
Testing and | Reviews and modifications g
maintenance
! '
: System
Working design
modules : 2 d ¢
implementation ocumen

Fig. 1.5.1 Phases in SDLC

*?’ TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering

Software Development Process

3. Design : The model of the software system is
prepared in this phase.

4. Coding or implementation : Using the software
design the coding is done in this phase. Thus the

implementation model is prepared.

5. Testing and maintenance : The code is tested and
modified if required.

1.6 I Software Process Framework
v MSBTE : Winter-15, 16, Summer-15, 17, Marks 4

» The process framework is required for representing
the common process activities.

+ As shown in Fig. 1.6.1, the software process is
characterized by process framework activities, task
sets and umbrella activities.

Software Process
Process Framework
Umbrella Activities
Acttivity 1
(Tasksets| Work Task
Milestone
SQA Points
Acttivity n
(Tasksets| Work Task
Milestone
SQA Points

Fig. 1.6.1 Software process framework

Process framework activities
o Communication

» By communicating customer requirement

gathering is done.

» Planning - Establishes engineering work plan,
describes technical risks, lists resource requirements,
work products produced and defines work
schedule.

» Modeling - The software model is prepared by :
= Analysis of requirements

= Design

» Construction - The software design is mapped into
a code by :
= Code generation
= Testing
» Deployment - The software delivered for customer
evaluation and feedback is obtained.
Task sets - The task set defines the actual work done
in order to achieve the software objective. The task
set is used to adopt the framework activities and
project team requirements using :
» Collection of software engineering work tasks
= Project milestones

= Software quality assurance points
Umbrella activities - The umbrella activities occur
throughout the process. They focus on project
management, tracking and control. The umbrella
activities are

1. Software project tracking and control - This is
an activity in which software team can assess
progress and take corrective action to maintain
schedule.

2. Risk management - The risks that may affect
project outcomes or quality can be analyzed.

3. Software quality assurance - These are activities
required to maintain software quality.

4. Formal technical reviews - It is required to
assess engineering work products to uncover
and remove errors before they propagate to next
activity.

5. Software configuration management - Managing
of configuration process when any change in the
software occurs.

6. Work product preparation and production - The
activities to create models, documents, logs,
forms and lists are carried out.

7. Reusability management - It defines criteria for
work product reuse.

8. Measurement - In this activity, the process can
be defined and collected. Also project and
product measures are used to assist the software
team in delivering the required software.

? TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering

w

Software Development Process

Board Questions
1. What do you mean by process framework ?
Explain with suitable diagram.
2. Explain the basic process framework activities.

MSBTE : Winter-15, Marks 4

MSBTE : Winter-15, 16, 17, Summer-14, 15, 17, 18, Marks 8

» Definition of process model : The process model
can be defined as the abstract representation of
process. The appropriate process model can be

chosen based on abstract representation of process.
e The software process model is also known as
Software Development Life Cycle (SDLC) model or

software paradigm.

» Various types of process models are -

I I

Perspective Specialized
process model process model

Waterfall model
RAD model
Spiral model

Component based model

Formal methods model

Fig. 1.7.1 Types of process models
Perspective Process Model

Waterfall Model

» The called as
‘linear-sequential model” or ‘classic life cycle model’.

waterfall model is also

Requirement
gathering and analysis

Design

» The software development starts with requirements
gathering phase. Then progresses through analysis,
design, coding, testing and maintenance,

Fig. 1.7.2 illustrates waterfall model.

« In requirement gathering and analysis phase the

basic requirements of the system must be

understood by software engineer.
e The
requirements analysis and coding. Design focuses

design is an intermediate step between
on program attributes such as -i) Data structure
ii) Software architecture iii) Interface representation
iv) Algorithmic details.

» Coding is a step in which design is translated into
machine-readable form. Programs are created in this
phase.

Testing begins when coding is done. The purpose
of testing is to uncover errors, fix the bugs and
meet the customer requirements.

Maintenance is the longest life cycle phase. When
the system is installed and put in practical use then
error may get introduced, correcting such errors and
putting it in use is the major purpose of
maintenance activity. Similarly, enhancing system'’s
services as new requirements are discovered is

again maintenance of the system.
Advantages of waterfall model

1. The waterfall model is simple to implement.

2. For implementation of small systems waterfall
model is useful.

Coding

Testing

Maintenance J

S T2 Watariall wiode).

A TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 1-6 Software Development Process
Disadvantages of waterfall model « Multiple teams work on developing the software
1. It is difficult to follow the sequential flow in system using RAD model parallely.
software development process. If some changes © In the requirements gathering phase the
are made at some phases then it may cause some developers communicate with the users of the
confusion. system and understand the business process
2. The requirement analysis is done initially and and requireinents of the software sygtem.
sometimes it is not possible to state all the © During analysis and planning phase, the
requirements explicitly in the beginning. This analysis on the gathere.d requirements is ‘made
srge « - and a plannmg for various software
causes difficulty in the project. faa s
z development activities is done.
> 'Hw. customer can sce the \~_-'ork|ng.mo.dcl Ol.‘ the 9 During the design phase various models are
project only at the end. After reviewing of the created. Those models are business model, data
working model; if the customer gets dissatisfied model and process model.
then it causes serious problems. o L))
9 The build is an activity in which working code
1.714.2| RAD Model (Incremental Model) is generated. This code is well tested by its
The RAD Model i . 1 team. The functionalities developed by all the
B ode B Dype it lcielnenta . Process teams are integrated to form a whole.

model in which there is extremely short)

development cycle. © Finally the deployment of all the software

o components (created by various teams working

e When the requirements are fully understood and on the project) is carried out. (Refer Fig. 1.7.3)

the component based construction approach is

adopted then the RAD model is used. Advantages of RAD Model
» Using the RAD model the fully functional system (1) Faster development cycle.

can be developed within 60 to 90 days. R T y T

F ¥ (2) Visualization of related routines periodically.

« Various phases in RAD are Requirements Gathering, . :

Analysis and Planning, Design, Build or (3) Encourages user involvement.

Construction and finally Deployment. (4) Low maintenance cost.

‘,
Teamdn
Design -—1
Team#2
Build
Requirements Design
gathering —l
D
Build g
Team#1 p
|
Analysis) o
and planning Dot —l y
Build

| #———— 60 to 90 days period ——]

Fig. 1.7.3 RAD model

TECHNIGAL PUBLICATIONS - An up thrust for knowledge

Software Engineering

~1

Software Development Process

Disadvantages of RAD Model

(1) It has reduced scalability.

(2) Not appropriate when technical risks are high.

(3) This model requires heavily committed developer
and customers. If commitment is lacking then
RAD projects will fail.

Difference between Waterfall Model and
Incremental Model
e Waterfall model Incremental model
1 This model is used This model is used when
when requirements there is possibility of
~ are clearly defined. change in requirements.
2 There is no customer After each increment, the
interaction until the customer can take a
last phase of the review of the product
waterfall model. generated so far.
3 Depending upon the = Less human resource is
requirements of the required.
project, the human
resource is required. I
4 Risk of failure of Risk of failure of project
project is high. is low.

Spiral Model

¢ This
prototyping model and controlled and systematic
approaches of the linear sequential model.

¢ This
incremental versions of software. In this model, the

model possess the iterative nature of

model gives efficient development of

software is developed in series of increments.

.

The sprial model is divided into a number of
framework activities. These framework activities are
denoted by task regions.

¢ Usually there are six tasks regions. The spiral
model is as shown in Fig. 1.7.4.

« Spiral model is realistic approach to development of

large-scale systems and software. Because customer
the problem
statement at each evolutionary level. Also risks can

and developer better understand

be identified or rectified at each such level.

In the initial pass, product specification is built and
in subsequent passes around the
prototype gets developed and then more improved
versions of software gets developed.

spiral the

Planning

Customer
communication

Risk anaysis |

Customer evaluation
and feedback

ngineering

Construction |
and release /

Fig. 1.7.4 Spiral model

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering

Software Development Process

» During planning phase, the cost and schedule of
software can be planned and adjusted based on
feedback obtained from customer evaluation.

« In spiral model, project entry point axis is defined.
This axis represents starting point for different
types of projects.

« For instance, concept development project will start
at core of spiral and will continue along the spiral
path. If the concept has to be developed into actual

project

then at entry point 2 the product

development process starts. Hence entry point 2 is

r~

Requirement changes can be made at every stage
of new version.

Risks can be identified and reduced before they
get problematic.

The working model is available to the customer
at certain stage of iteration.

Disadvantages of spiral model

1.

This model is based on customer communication.
If the communication is not proper then the

called product development project entry point. The
development of the project can be carried out in
iterations.
 The task regions can be described as :
i) Customer communication - In this region, it is
suggested to establish customer communication.
ii) Planning - All planning activities are carried out
in order to define resources time line and other
project related activities.
iii) Risk analysis - The tasks required to calculate
technical and management risks are carried out.
iv) Engineering - In this task region, tasks required
to build one or
applications are carried out.

more representations of

v) Construct and release - All the necessary tasks
required to construct, test, install the application
are conducted. Some tasks that are required to
provide user support are also carried out in this
task region.

vi) Customer evaluation - Customer’s feedback is

obtained and based on customer evaluation
required tasks are performed and implemented at
installation stage.
 In each region, number of work tasks are carried
out depending upon the characteristics of project.
For a small project relatively small number of work
tasks are adopted but for a complex project large

number of work tasks can be carried out.

«In spiral model, the software engineering team
moves around the spiral in a clockwise direction
beginning at the core.

Advantages of spiral model
1. This
requirements can be identified at new iteration.

model has iterative nature. Hence

product being developed is not up to the mark.

2. It demands considerable risk assessment. If the

risk assessment is done properly then only
successful product can be obtained.

Sr. No. Waterfall model Spiral model

1 It requires well It is developed in
understanding of iterations. Hence the
requirements and requirements can be
familiar technology. identified at new

iterations.

2 Difficult to The required changes
accommodate changes | can be made at every
after the process has stage of new version.
started.

3 Can accommodate It is iterative model.
iteration but indirectly.

R Risks can be identified = Risks can be
at the end which may identified and
cause failure to the reduced before they
product. get problematic.

5 The customer can see The customer can see
the working model of the working product
the project only at the at certain stages of
end. After reviewing of | iterations.
the working model; if
the customer gets
dissatisfied then it
causes serious
problems.

6 Customers prefer this Developers prefer this
model. model.

7 This model is good for | This model is good
small systems. for large systems.

8 It has sequential nature. It has evolutionary

nature.

?’ TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 1-9 Software Development Process

Specialized Process Model

1.7.21| Component Based Development
» The commercial off-the-shelves components that are developed by the vendors are used during the
software built.

e These components have specialized targeted functionalities and well defined interfaces. Hence it is

easy to integrate these components into the existing software.

» The component based development model makes use of various characteristics of spiral model. This
model is evolutionary in nature. That means the necessary changes can be made in the software

during the each iteration of software development cycle.

 Before beginning the modeling and construction activity of software development the candidate
component must be searched and analyzed. The components can be simple functions or can be object
oriented classes or methods.

« Following steps are applied for component based development -

o Identify the component based products and analyze them for fitting in the existing application
domain.

» Analyze the component integration issues.

« Design the software architecture to accommodate the components

« Integrate the components into the software architecture.

» Conduct comprehensive testing for the developed software.

« Software reusability is the major advantage of component based development.

» The reusability reduces the development cycle time and overall cost.

1.7.2.2| Formal Methods Model

» This model consists of the set of activities in which the formal mathematical specification is used.

» The software engineers specify, develop and test the computer based systems using the mathematical
notations. The notations are specified within the formal methods.

» Cleanroom software engineering makes use of the formal method approach.

¢ The advantage of using formal methods model is that it overcomes many problems that we encounter
in traditional software process models. Ambiguity, incompleteness and inconsistency are those
problems that can be overcome if we use formal methods model.

‘ ~User - ggi?(teer:lnent Architectural Formal :;?g, |
requirements definition e design specification design

Fig. 1.7.5 Formal methods model

e The formal methods model offers defect-free software. However there are some drawbacks of this

model which resists it from getting used widely. These drawbacks are

* The formal methods model is time consuming and expensive.

-

? TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Enginecring

- 10

Software Development Process

« For using this model, the developers need the
strong mathematical background or some extensive

training.

o If this model is chosen for development then the
communication with customer becomes very
difficult.

Board Questions
1. Differentiate between waterfall — model and

incremental model,
MSBTE : Summer-14, 18, Winter-16, Marks 4
Write four drawback of RAD model.
MSBTE : Summer-15, Marks 4

o

3. In which situation RAD model is applicable ?
Give its advantages and disadvantages.
MSBTE : Winter-15, Marks 4

4. Explain spiral model with neat diagram.
MSBTE : Summer-15, Marks 4

15

With neat diagrani, explain RAD model with its
advantages and disadvantages. (2 each)

MSBTE : Winter-16, Marks 6, Summer-17, Marks 8

6. Explain the waterfall model.
MSBTE : Winter-17, Marks 4

~N

Draw the neat labeled diagram of spiral model and
list two disadvantages of spiral model.
MSBTE : Summer-18, Marks 4

Agile Software Development

MSBTE : Winter-15, 16, 17, Summer-15, 16, 17, Marks 4

» The agile processes are the light-weight methods
are people-based rather than plan-based methods.

e The agile process forces the development team to
focus on software itself rather than design and
documentation.

» The agile process make use of iterative method.

« The aim of agile process is to deliver the working
model of software quickly to the customer.

Agile Principles
¢ There are famous 12 principles used as agility
principles -
1. Satisfy the customer by early and continuous
delivery of valuable software.

2. The changes in the must be

accommodated. Even though the changes occur

requirements

late in the software development process, the
agile process should help to accommodate them.

3. Deliver working software quite often. Within the
shorter time span deliver the working unit.

4. Business people and developers must work

together throughput the project.

Motivate who the

W

the people
projects. Provide the environment and support to
the development team and trust them for the job
to be done.

are building

6. The working software is the primary measure of
the progress of the software development.

7. The agile software development approach
promote the constant project development. The
constant speed for the development of the
product must be maintained.

8 To -enhance the agility there should be

continuous technical excellence.

9. Proper attention to be technical

excellence and good design.

given to

10. Simplicity must be maintained while developing
the project using this approach.

11. The teams must be the self-organizing team for
getting best
design.

architecture, requirements and

12. At regular intervals the team thinks over the
issue of becoming effective. After the careful
review the team members adjusts their behavior
accordingly.

Agile Process and its Importance

Agile process is based on following assumptions
about software projects

1. It is difficult to predict the software requirements
in advance. Similarly the customer priority often
get changed.

2. It is difficult to predict how much design is
necessary before the implementation.

w

All the software development activities such as
analysis, design, construction and testing are just
difficult to predict.

T

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 1-

Software Development Process

Characteristics of agile process are -

1. Agile processes must be adaptable to technical
and environmental changes. That means if any
technological changes occur, then the agile
process must accommodate it.

2. The development of agile processes must be
incremental. That means, in each development
the increment should contain some functionality

that can be tested and verified by customer.

3. The customer feedback must be used to create
the next increment of the process.

4. The software increment must be delivered in
short span of time.

It must be iterative, so that each increment can

:Jl

be evaluated regularly.
Features of agile process

The features of agile process models
The key features of an agile process model can be
summarised as follows :
* The software itself is the important measure of the
team’s progress, rather than documentation.
e The
determine how to structure and handle the

development team has autonomy to

development work.
» Changes can be easily adapted.
o Customers can more easily examine the software

and provide feedback.

Merits :

1) Customer satisfaction can be attained by rapid
and continuous delivery of useful software.

2) Customer, developer and tester interact with each
other during software development process.

3) Continuous attention can be given for excellent
technical design and software quality.

4) Even late changes in requirements can be

accommodated.

Demerits :

1) There is lack of emphasis on necessary designing
and documentation during software development
process.

~

2) The project can easily get off the track if customer

is not clear about his requirements.

Difference between Prescriptive Process Model
and Agile Process Model

Prescriptive process
model

It is a traditional
approach of software
development.

It is product oriented
process model

Sometimes it is
difficult to adapt

changes during the software
software development.
development.

Some models allow Customer

less involvement of
customers.

Agile process model

It is a modern
approach of software
development.

It is people oriented
process model.

It is easy to adapt the
changes during

involvement is
important feature of
agile process model.

Lengthy cycles of
software development
may cause delayed
delivery of the

Quick delivery of the
product.

product.

Emphasis is on Less emphasis of

documentation. documentation
during software
development.

Examples — Waterfall
model, spiral model.

Examples — Extreme
programming, Scrum.

Process Models

There are various agile process models -

1. Extreme Programming

2. Adaptive Software Development

3. Dynamic System Development Method(DSDM)
4.

5. Crystal

Extreme Programming

Extreme Programming (XP) is one of the best known

agile methods. The extreme programming approach
was suggested by Kent Beck in 2000. The extreme
programming process is explained as follows -

?‘ TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 1-

Software Development Process

» Customer specifies and priorities

Customer becomes

the system
one of the
important members of development team. The
developer together prepare a
story-card in which customer needs are mentioned.

requirements.

and customer
» The developer team then aims to implement the
scenarios in the story-card.

» After developing the story-card the development
team breaks down the total work in small tasks.
The efforts and the estimated resources required for
these tasks are estimated.

»The customer priorities the stories for
implementation. If the requirement changes then
sometimes unimplemented stories have to be

discarded. Then release the complete software in
small and frequent releases.

« For accommodating new changes, new story-card
must be developed.

« Evaluate the system along with the customer.

This process is demonstrated by the following
Fig. 1.8.1.
Presar o Pt
story card release
story card
]
Perform software
. Release sof tegration
” 3 and testing

Fig. 1.8.1 Extreme programming release cycle

Adaptive Software Development

¢ The adaptive software development approach was
proposed by Jim Highsmith. This approach is useful
in building the complex software systems using
iterative apporach

e The focus of this method is on working in

collaboration and team self organization.

Release
O .= =

=1
==

Fig. 1.8.2 Adaptive software development life cycle

increment

-

« The life cycle of ASD consists of three phases of
software development and those are -

1. Speculation 2. Collaboration 3. Learning.

1. Speculation: This is an initial phase of the
adaptive software development process. In this
phase the adaptive cycle planning is conducted.
In this cycle planning mainly three types of
information is used such as - Customer's mission
statement, project constraints (delivery date, user

budgets on) and basic

requirements of the project.

description, and so

2. Collaboration: The motivated people work in
collaboration to develop the desired software
product. In this phase collaboration among the
members of development team is a key factor.
For successful collaboration and coordination it is
necessary to have following qualities in every
individual -

9 Assist each other without resentment
© Work hard.
@ Posses the required skill set.

© Communicate problems and
help each other to accomplish
the given task.
© Criticize without any hate.
3. Learning : As the team members
developing the components, the emphasize is on
learning new skills and techniques. There are

go on

three ways by which the team members learn -

© Focus groups : The feedback from the end-users
is obtained about the software component being

developed. Thus direct feedback about the
developed component can be obtained.
© Formal technical review This review for

software components is conducted for better

quality.

© Postmortems The team analyses its own
performance and makes appropriate
improvements.

—_—

« SCRUM is an agile process model which is used
for developing the complex software systems.

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering

-13

Software Development Process

« It is a lightweight process framework that can be

used to and control the
using and incremental
approach. Here the term lightweight means the

manage software

development iterative
overhead of the process is kept as small as possible
in order to maximize productive time,

» This model is developed by Jeff Sutherland and Ken
Schwaber in 1995.

Principles
« Various principles using which the SCRUM works
are as given below -

1. There are small working teams on the software

development projects. Due to this there is
maximum communication and minimum
overhead.

2. The tasks of people must be partitioned into
small and clean packets or partitions.

3. The process must accommodate the technical or
business changes if they occur.

4. The
increments. These increments must be inspected,

process should produce software

tested, documented and built on.

5. During the product building the constant testing
and documentation must be conducted.

6. The SCRUM process must produce the working
model of the product whenever demanded or
required.

« Various development activities

analysis, design, evolution and delivery) are guided

by SCRUM principles.

(requirements

=]

; / Sprint backlog

Product backlog

Development Activities

In SCRUM emphasize is on software process pattern.
The software process defines a set of
development activities. Refer Fig. 1.8.3.

pattern

Various development activities in SCRUM are -

1. Backlog : It is basically a list of project
requirements or features that must be provided
to the customer. The items can be included in the
backlog list at any time. The product manager
analyses this list and updates the priorities as per
the requirements.

2. Sprint : These are the work units that
needed to achieve the requirements mentioned in
the backlogs. Typically the sprints have fixed
duration or time-box (typically of 2 to 4 weeks).
Thus sprints allow the team members to work in

are

stable and short-term environment.

3. Meetings : These are 15 minutes daily meetings
to report the completed activities, obstacles and
plan for next activities. Following are three
questions that are mainly discussed during the
meetings
i) What are the tasks done since last meeting ?
ii) What are the issues (obstacles) that team is

facing ?
ili) What are the next activities that are planned ?

4. Demo During this phase, the software
increment is delivered to the customer. The
implemented functionality which is demonstrated
to the customer. Note that demo focuses on only
implemented functionalities and not all the
planned functionalities (and vet to get
implemented) of the software product.

24 Hour

30 Days

Software
increment
with

spec
functionality

Fig. 1.8.3 SCRUM workflow activities

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering

Software Development Process

Roles :

1. Scrum Master - The Scrum master leads the
meeting and analyses the response of each team
member. The potential problems are discussed
and solved in the meeting with the help of
master.

2. Team Members - These are the persons working
in a team to develop the software solutions.

Advantages and Disadvantages :

Advantages :

1. SCRUM model brings transparency in project
development status.

ra

It provides flexibility towards the changes.

W

There is improved communication, minimum
overhead in development process.

4. The productivity can be improved.

Disadvantages :
1. Some decisions are hard to track in fixed time
span.

2. There are problems to deal with non-functional
requirements of the system.

Dynamic System Development Method

(DSDM)
In this agile method, the project deadline is met using
the incremental prototyping approach. This is an
iterative development process.

The Dynamic System Development Method (DSDM)
consortium has defined an agile process model called
DSDM life cycle.

Various phases in this life cycle model are as
follows -

1. Feasibility study
requirements and constraints the viability of thee

By analyzing the business

application is determined in this phase.

study The functional and
informational requirements are identified and

2. Business

then the business value of the application is
determined. The basic application architecture is
decided in this phase.

3. Functional model iteration : The incremental
approach is adopted for development. The basic
functionalities are demonstrated to the customer
by building the suitable increments. The intention
cycle is to gather
requirements by eliciting the requirements from
the customer as each prototype is being

of iterative additional

developed.

4. Design and build iteration : Each prototype is
revisited during the functional model iteration to
ensure that the
satisfied by each software component. Sometimes
if possible, the design and build activities can be

business requirements are

carried out in parallel.

5. Implementation : In this phase, the software
increment is placed in the working environment.
If changes are suggested or if the end-user feels
it incomplete then the increment is placed in
iteration for further improvement.

The DSDM can be combined with XP method or ASD

concepts to create a combination model.

Crystal

« Cockburn and Highsmith suggested the crystal
family of agile methods.
 The primary goal of this method is to deliver useful

and working software.

o In this model, a set of methodologies are defined
which contains the core elements that are common
to all. These methodologies also contain roles,
process patterns, work products and practice that
are unique to each.

e Thus the crystal family is actually a set of agile
processes that are useful for different types of
projects. The agile team has to select the memebers
of the crustal family that is most approapriate for
their ongoing project and environment.

Board Questions
1. Describe Agile process models in detail.
MSBTE : Summer-15, Marks 4

2. Explain the features of Agile software development

MSBTE : Winter-15, 16, Marks 4

approach.

?" TECHNICAL PUBLIGATIONS - An up thrust for knowledge

Software Engineering

3. Differentiate between Prescriptive Process Model
and Agile Process Model (any four points).

MSBTE : Summer-16, Winter-17, Marks 4

4. Explain the term scrun. | R AL)

5. What is agile process ? |EHAS LN

1.9 | Selection Criteria for Software Process
: ~ Model MSBTE : Summer-16, Marks 4

table which
particular process model can be used

‘ollowin shows e situations i
Foll N h th tuation n

Type of the project Suggested model

 If a small project is to be Waterfall model
implemented.

e If the requirements of the project
are well understood.

o Existing manual system has to be
automated.

o If there is no need for customer
involvement in the project
development cycle.

e When project requirements are not | RAD model

clear,

o The system will be operated by
novice users.

o The GUI of the project is very
important.

» Delivery of the project is expected
within a short period of time.

o The risk of long project is not
affordable.

Spiral model
e Requirements are not known and

will be known only with time.
e Project is of large size.

» When the requirements are not
properly known.

Agile model
o For the systems in which customer

involvement is must.
o The GUI of project is important.

» Quick delivery of the product is

expected,

Software Development Process

Board Question
1. What is Waterfall Model ? State the practical

situations in which it can be used.

MSBTE : Summer-16, Marks 4

QQa

e 2 TECHNICAL PUBLICATIONS - An up thrust for knowledge
L3

Software Engineering 1-16 Software Development Process

Notes

onff

TECHNICAL PUBLICATIONS - An up thrust for knowledge

UNIT - 1l

Software Requirement
Engineering

Part I : Software Engineering Practices

E Software Engineering Practices and its
Importance

Definition : Software engineering practices includes -

concepts, principles, methods and tools that must be

considered for planning and development of software

system.
Importance :
1) By following software engineering practices,

every concerned entity gets involved in software
development process.

2) The software engineering practices - provide
detailed insight for software development
process.

3) It acknowledges the software engineer about the

principles that must be used during the software
development.

Essence of Software Engineering Practice :
» The problem solving activity is normally based on
following four steps -
1. Understanding of the problem (Communication
and requirement analysis).
Planning for possible solution (Modelling and
design).
Execute the plan (Code generation).
4. Check the accuracy of the solution (Testing and
quality assurance).

IZI Core Principles

MSBTE : Winter-15, 16, 17, Summer-15, 17, Marks 8

» David Hooker proposed seven core principles for
software engineering practice. These are as follows -

Principle 1. Reason it all Exists : The software
system that you are going to develop must give
value to its users. If your development is not going
to add any value to its users then don't develop such

system.

Principle 2. Keep it Simple, Stupid (KISS) : The

software design must be simple, easy for
understanding and easy to maintain.
Principle 3. Maintain the Vision : There should be

clear vision for the software system to be built. The
clear vision about the system helps to develop it
without any ambiguity.

Principle 4. What you will Produce, others will
Consume : The software system that you develop
be

programmers, testers and so on, So whenever you

will used by users, software designers,
develop the system, develop in such a way that your

job will be easier for them to handle.

Principle 5. Be Open to the Future : Develop a
system in such a way that it will have longer life
time. Develop the system in such a manner that it
will adapt any changes comfortably. Never design
the system for specific problems only, rather create it

for general purposes.

has
The

reusability can be achieved using the approaches like

Principle 6. Plan ahead for Reuse : Reusability

got vital importance in software industry.
object oriented programming. The software must be
developed and documented in such a way that

reusability can be easier one.

Principle 7. Think : Think about the system that you

are going to develop and acquire the required

Software Engineering

knowledge. Thoughtfully, apply above six principles

during the software development process.

Board Questions
1. State and describe various core principles of
software engineering.
2. List core principle of Software Engineering.

MSBTE : Summer-15, 17, Winter-17, Marks 4

@ Communication Practices

» Communication is carried out in order to
understand the customer requirements. Following
are the principles that are used to make the

communication effective -

Principle 1 - Listen : It is important to listen the
Ask

appropriately. Never interrupt him/her annoyingly

customer carefully. for the clarifications

during the narration.

Do

research to understand the business domain. If you

Principle 2 - Prepare for communication : some
are conducting the meeting, then prepare the agenda
before the meeting.

Principle 3 - Have facilitator for communication :

The facilitator or a leader is required for the
communication for three reasons. Firstly to move the
conversation in productive direction, secondly to
resolve any conflicts and thirdly to ensure that the
designated and standards are

principles being

followed.
Principle 4 - Have face-to-face communication : The
face to face communication is important to have

effective communication.

Principle 5 - Take notes and document the

decisions : It is important to note down the
important points and decisions made during the

communication.

Principle 6 - Strive for collaborations : The collective
knowledge of the members of the team is combined
to understand the system. This makes a small

collaboration which help the team members in

-

Software Requirement Engineering

deciding the goals of the software system being
developed.

Principle 7 - Stay focused : During the
communication and discussion, it is possible to
switch frequently from one topic to another. The
leader or facilitator of the communication must keep
the communication focused and must make every
topic modular. The modular discussion means leave
one topic only after resolving the issues within in it

and then only switch to another topic,

Principle 8 - Make pictorial representation : If
something is unclear, then make a drawing or sketch

of it for understanding,.

Principle 9 - Move on : During the communication
just move on by resolving the issues and by

understanding the things.

Principle 10 - Negotiate : There are times when the
developers and customer need to negotiate on some
of the issues such as some functionalities, delivery

date, features priorities and so on.

Board Questions
1. Briefly describe the principles of communication.
MSBTE : Winter-15, Marks 4

2. State and describe six principles of communication
practices. MSBTE : Winter-16, Marks 4
3. What are conmunication principles ? Explain

their meaning. MSBTE : Winter-17, Marks 4

m Planning Practices
MSBTE : Summer-15, 17, 18, Marks 8

« Planning is an activity that includes the set of
management and technical practices that software
has to follow direction. Various

in definite

principles of planning are -
Principle 1 - Understand the scope of the project :
The scope of the project help the software team what

is the goal of development.

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering

[

Software Requirement Engineering

Principle 2 - Make the planning by involving the
customer : Customers specify what they exactly
want from the software system. The developer can
negotiate order of delivery, some unrealistic
functionalities, cost and so on. Hence customers

involvement in the project is must.

Principle 3 - Planning activity should be iterative :
Iterations help the developer to accommodate the
changes in the system plan.

Principle 4 - Make estimation based on the
knowledge : Estimation of the project represents the

efforts, cost and duration based on current

understanding of the work. But it is always vague.

Principle 5 - Consider risk while defining the plan :
The project plan must be flexible enough to

accommodate one or more risks.

Principle 6 - Be realistic : Software development can
not be 100 % perfect, there can be more or less
ambiguities and omissions, budgets and schedule
may vary, developers may make mistakes and so on.
Such things might occur during the planning of the

system.

Principle 7 - Adjust granularity according to plan :

Granularity means how much detailed is your project
plan. The fine granularity plan provides more work
plan details planed relatively short time increment.
On the other hand, the coarse granular plan provide
broader work task planed over long period. The plan
must be flexible enough for making the adjustments

about the granularity of the project.

Principle 8 - Ensure the quality : The plan must
help the software team to induce quality in their
development.

Principle 9 - Describe the accommodated changes :
The plan must help the software team to induce

required changes in their development.

Principle 10 - Track the plan frequently and make

the changes as per the requirements : The project

plan must be adjusted frequently.

Board Questions
1. Describe eight principles of good planning.
MSBTE : Summer-15, 17, Marks 8
2. Explain principles of planning practices in
software engineering (any four)

MSBTE : Summer-18, Marks 4

@ Modeling Practices ERERIICaIAL I

» Models are created for understanding the system.
During software development, there are two kinds
of models that are developed - analysis model and
design model.

(1) Analysis Modeling Principles
Following are analysis modeling principles -

1. The information domain of the problem must
be represented and understood : The
information domain represents the data that
flows in and out of the system. For designing the
analysis model it is necessary to understand this
data flow.

2. The functionality of the software must be
performed : There are various types off the
functionality that must be present in the system.
Some functions can be directly beneficial to the
user. Some functions are control functions, some
functions are for transforming the data and so
on.

3. The behavior of the software must be
represented by the model : By creating
appropriate model the behavior of the computer
system for the input submitted by the user,
interaction of the system with the external system
are represented by the software.

4. The model should be created in such a way that
it represents the details of the software in
layered or hierarchical manner Software
systems are usually created to solve the complex
problems. The large and complex problems are
solved using divide and conquer strategy. These
sub-problems are relatively easy to understand.
This process of dividing the problems into
smaller sub-problems is called partitioning.

5. The analysis task must move from basic
information to the implementation of the
concept : Before creating the analysis model the
information gathered is from users' point of

? TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering

~

Software Requirement Engineering

view. This information should be transformed in
such a way that the implementation of the
concept using the computer based system.

(2) Design Modeling Principles
Following are design modeling principles -

1. Analysis model must be used to create design
model The model describes the
information system behavior,

analysis
domain, user
visible functionalities and so on. The design
model translates this information into the system
architecture. Hence the elements of design model

should be traceable to analysis model.

2. Consider the architecture of the system to be
built :
prepared before creating the actual design of the

For

The skeleton of the system should be

system. creating such architecture the
information present in the analysis model is

used.

3. Design of data is an important activity : The
data design is an important element of the
architectural design. It represents the flow of
information.

4. Interfaces must be designed carefully : The
interfaces are important for communication of
two components and communication with the
external environment. Hence these need to be

designed carefully.

5. User interface designs must be as per the
needs : User interfaces basically assist the users
to interact with the system via user interfaces.
Hence the design of user interface must be by
considering the users needs.

6. Component level design must be functionally
independent Functional
quality that indicates the single mindedness of

independence is a

software component. Ideally every component
must focus on one functionality at a time. This is
called cohesiveness of the components. During
component design high
(functionally independence) is required.

level cohesiveness

7. Components must be loosely coupled : If the
tightly coupled then
propagation might get increased. The maintaining

components are error

‘?’ TECHNICAL PUBLICATIONS - An up thrust for knowledge

such systems become difficult. This denotes low
coupling property of design.

8. Design representations
understand
generate the code. Hence it must be easy to
understand so that implementation of the system

must be easy to
The software design is used to

can be effectively done.

9. Design development must be iterative : The
iterative development of the design model will
refine the work and errors can be corrected in
each iteration. But each after each
becomes difficult to keep the software design
simple.

iteration it

Board Question
1. Explain modeling practice in software engineering
with principles.

Construction Practices

are based on -
and

MSBTE : Winter-17, Marks 4

e The
Preparation

construction practices

principles, coding principles

validation principles.
(1) Preparation principles
These are some important principles that software

developers must follow before writing the code,

1. Firstly, understand the problem for which the
system is designed.

2. Know the basic design principles and concepts.

3. Choose appropriate programming language for
coding.

4. Select such a programming environment which is
convenient to work.

s

Prepare the set of unit tests for each component
of the code.

(2) Coding principles

These are some important principles that software
developers must follow while writing the code.

1. Adopt
approach for the algorithm.

structured or modular programming

2. Choose the appropriate data structures.

Software Engineering

Software Requirement Engineering

3. By understanding the system architecture, create
appropriate interfaces.

4. Keep conditional logic very simple.

5. Create the nested loop in such a way that they
can be tested easily.

6. Give meaningful variable names.

7. Make the documented by
appropriate comment statements within it.

code adding

8. Make use of
between the code so that appropriate visual

indentation and blank lines in

layout of the code can be created.

(3) Validation principles

These are some important principles that software
developers must follow after completion of writing
the code.

1. Review the code thoroughly.

!\J

Perform unit tests and correct the errors.

Refactor the code.

L5

Board Question
1. What is software coding ? State three principles of

MSBTE : Summer-16, Marks 4

Software Deployment
MSBTE : Summer-15, 16, 17, Winter-15, Marks 8

e During deployment of the software component
three activities are carried out - i) Delivery
ii) Support and iii) Feedback.

code validation.

» Following are the set of principles that must be
followed while delivering the software
increment/release to the customer.

1. Manage or fulfill the customer expectations :
Quiet often customers expect too much from the
delivered software product. To avoid this have a
clear communication with the customer about
the functionalities of the product.

2. The delivery package must be assembled and
well tested : Provide CD-ROM or other media
to the customer containing all the executables of
the software components.

3. The support service must be ready before
delivery of the software system : Assist the
user to handle the software system

appropriately. Moreover, if any problem or
query occurs then help the end-user to solve it.

4. Appropriate instructional material must be
given to the end user :

instruction manuals, help material, training aids,

Provide the user with

demo and so on for handling the system
properly.
5. Do not deliver erroneous software : Never
provide the low quality or erroneous software

to the customers.

Board Questions
1. Explain deployment principle.
2. What s State the
principles to be followed while preparing to deliver

MSBTE : Summer-16, Marks 8

3. What is meant by software deployment ?

MSBTE : Summer-17, Marks 4

Software deployment ?

the software increment,

Part II : Requirement Engineering

Requirement Gathering and Analysis

MSBTE : Summer-15, 17, 18, Winter-15, 17, Marks 8

the
establishing the services that the customer requires

» Requirement

engineering is

process of

from a system. And the constraints under which it
operates and is developed.

Requirement Engineering Tasks

» Requirement engineering is the process

characterized for achieving following goals -

» Understanding customer requirements and their
needs

» Analyzing the feasibility of the requirement

= Negotiating the reasonable solutions

= Specification of an unambiguous solution.

= Managing all the requirements of the project

» Finally transforming the requirements into the
operational systems
¢ Requirement engineering

process performs

following seven distinct functions -

2l TECHNICAL PUBLICATIONS - An up thrust for knowledge
&

Software Enginecring

Software Requirement Engineering

= Inception

= Elicitation

——————— Elaboration

Requirement
engineering
tasks

Negotiation

—————————————= Specification

Validation

= Requirement management

Fig. 2.8.1 Requirement engineering tasks

Let us now discuss these tasks in detail -

- Inception

» The inception means specifying the beginning of
the software project. Most of the software projects
get started due to business requirements. There may
be potential demand from the market for a
particular product and then the specific software
project needs to be developed.

e There exist several stakeholders who define the
business ideas. Stakeholders mean an entity that
takes active participation in project development. In
software project development, the stakeholders that
are responsible for defining the ideas are business
managers, marketing people, product managers and
so on. Their role is to do rough feasibility study
and to identify the scope of the project.

During the inception a set of context free questions
is discussed. The purpose of inception is to -
1. Establish the basic understanding of the project.

2. Find out all possible solutions and to identify
the nature of the solution.

3. Establish an effective communication between
developer and the customer.

Elicitation

e Before the requirements can be analyzed and
modelled they must undergo through the process of
elicitation process. Requirements elicitation means
requirements discovery. Requirements elicitation is
very difficult task.

Elaboration

« Elaboration is an activity in which the information
about the requirements is expanded and refined.
This information is gained during inception and
elicitation.

e The goal of elaboration activity is to prepare a
technical model of software functions, features and
constraints.

- Negotiation

» Sometimes customer may demand for more than
that is achieved or there are certain situations in
which customer demands for something which
cannot be achieved in limited business resources.
To handle such situations requirement engineers
must convince the customers or end users by
solving various conflicts. For that purpose,
requirement engineers must ask the customers and
stakeholders to rank their requirements and then
priority of these requirements is decided. Using
iterative approach some requirements are
eliminated, combined or modified. This process
continues until the users’ satisfaction is achieved.

Specification

« A specification can be a written document,
mathematical or graphical model, collection of use
case scenarios or may be the prototypes.

There is a need to develop a standard specification
in which requirements are presented in consistent
and understandable manner.

For a large system it is always better to develop the
specification using natural language and in a
written document form. The use of graphical
models is more wuseful for specifying the
requirements.

Specification is the final work product of
requirement engineering process. It describes the
functions, constraints and performance of computer
based systems.

Validation

¢ Requirement Validation is an activity in which
requirement specification is analyzed in order to
requirements are specified
unambiguously. If any inconsistencies, omissions

ensure that the

-

? TECHNICAL PUBLIGATIONS - An up thrust for knowledge

ro
~1

Software Engineering

Software Requirement Engineering

and errors are identified then those are corrected or
modified during the validation.

¢ The most commonly used requirement validation
mechanism is Formal Technical Review (FTR). In

FTR, the review team validates the software
requirements. The review team consists of
requirement engineers, customers, end users,

marketing person and so on. This review team

basically identifies conflicting requirements,

inconstancies or unrealistic requirements.

Requirement Management

Definition : Requirements management is the process

of managing changing requirements during the

requirements engineering process and system

development.

Why requirements get change ?

* Requirements are always incomplete and
inconsistent. New requirements occur during the
process as business needs change and a better
understanding of the system is developed.

» System customers may specify the requirements
from business perspective that can conflict with end
user requirements.

» During the development of the system, its business

and the technical environment may get changed.

Board Questions
1. List seven tasks of requirement engineering.
MSBTE : Summer-15, Marks 4
2. With reference to requirement engineering, explain
i) Inception and i) Elicitation
MSBTE : Winter-15, Marks 4
3. Explain following requirements engineering tasks :
i} Negotiation 1i) Specification

MSBTE : Summer-17, Marks 4

. A] v : % PALITEN sneiteeri ?
4. What are major tasks of requirentent engineering :
MSBTE : Winter-17, Marks 8
5. Explain following requirements of engineering
tasks : i) Negotiation ii) Validation
MSBTE : Summer-18, Marks 4

? TECHNICAL PUBLICATIONS - An up thrust for knowledge

2.9 | Types of Requirements

Functional and Non-Functional Requirements
« Software system requirements can be classified as
functional and non functional requirements.

Functional Requirements

» Purpose : Functional requirements should describe
all the required functionality or system services.

o The customer should provide statement of service.
It should be clear how the system should react to
particular inputs and how a particular system
should behave in particular situation.

Functional

.

requirements are heavily dependent
upon the type of software, expected users and the

type of system where the software is used.

Functional user requirements may be high-level
statements of what the system should do but
functional system requirements should describe the
system services in detail.

For example : Consider a library system in which
there is a single interface provided to multiple
databases. These databases are collection of articles
from different libraries. A wuser can search for,
download and print these articles for a personal
study.

functional

this can obtain

requirements as,

From

example we

1. The user shall be able to search either all of the
initial set of databases or select a subset from it.

"~

The system shall provide appropriate viewers
for the user to read documents in the document
store,

3. A unique identifier (ORDER_ID) should be
allocated to every order. This identifier can be
copied by the user to the account's permanent
storage area.

Problems Associated with Requirements

* Requirements imprecision

1. Problems arise when requirements are not

precisely stated.

~

Ambiguous requirements may be interpreted in
different ways by developers and users.

3. Consider meaning of term 'appropriate viewers'

o

Software Engineering

Software Requirement Engineering

« User intention - Special purpose viewer for each
different document type;
« Developer interpretation - Provide a text viewer
that shows the contents of the document.
« Requirements completeness and consistency -
The requirements should be both complete and
consistent. Complete means they should include
descriptions of all facilities required. Consistent
there should be no conflicts
contradictions in the descriptions of the system

means or

facilities.
Actually in practice, it is impossible to produce a
complete and consistent requirements document.

Non Functional Requirements

» Purpose : The non functional requirements define
system properties and constraints.
Various properties of a system can be : Reliability,
And
Input and output

response time, storage requirements.
constraints of the system can be :
device capability, system representations efc.

« Process requirements may also specify programming
language or development method.

« Non functional requirements are more critical than

If

requirements do not meet then the complete system

functional requirements. the non functional

is of no use.

Types of Non Functional Requirements

¢ The classification of non functional requirements is
as given in Fig. 2.9.1.

Product requirements

¢ These requirements specify how a delivered product
should behave in a particular way. For instance:
execution speed, reliability.

Organizational requirements
» The of
organizational policies and procedures come under

requirements which are consequences
this category. For instance : Process standards used

implementation requirements.

External requirements

» These requirements arise due to the factors that are
external to the system and its development process.
For

instance Interoperability

legislative requirements.

requirements,

Performance requirements

e These requirements specify the performance or
durability of its functioning. For instance : Response
to various events at particular instance.

« In short, non functional requirements arise through
i) User needs
ii) Because of budget constraints
iii) Organizational policies
iv) The
software or hardware systems

need for interoperability with other

| Non functional |
requirement
Product Organizational External
requirements. requirements requirements
Efficiency Reliabiity Portability nteroperability Ethical
requi qui quirement requirsment requirement
| | |
Usability Delivery mplementation) Standard Legisiative
requirement quit requi qui requrement
Performance Size Safety
(requirement requirement requirement |

Fig. 2.9.1 Types of non functional requirement

TECHNIGAL PUBLICATIONS - An up thrust for knowledge

f122

e

Software Engincering

10%

o

Software Requirement Engineering

v) Because of external factors such as safety

regulations.
e Metrics used for specifying the non functional
requirements

Property Metric

Speed Events per response time processed
transactions per second.

Size Kilobytes.

Reliability Mean time to failure. Rate of failure.
Occurrence availability.

Robustness Time to restart after failure. Probability of
events causing failure.

Portability Number of target statements,

Ex. 2.9.1 : Eulist various functional and non functional
requirements for the Bank ATM systen.

Sol. : Functional requirements

1. There should be the facility for the customer to
insert a card.

2. The system should first validate card and PIN.

3. The system should allow the customer to deposit
amount in the bank.

4. The system should dispense the cash on
withdrawal.

5. The system should provide the printout for the
transaction.

6. The system should make the record of the
transactions made by particular customer.

7. On invalid PIN entry for three times the card
should be retained by the system.

8. The cash withdrawal is allowed in multiple of
100.

9. The cash deposition is allowed in multiple of
100.

10. The customer is allowed to transfer amount

between the two accounts.

11. The customer is allowed to know the balance
enquiry.

12. The customer is allowed to get the printout for
desired transaction.

13. The system should be efficient.

Non functional requirements

1. Each of the transaction should be made within 60
seconds. If the time limit is exceeded, then cancel
the transaction automatically.

2. If there is no response from the bank computer
after request is made within the minutes then the
card is rejected with error message.

3. The bank after the
processing of withdrawal from the bank. That
if sufficient fund is available

dispenses money only

means in user's
account then only the withdrawal request is
processed.

4. Each bank should process the transactions from
several ATM centers at the same time.

57}

The machine should be loaded with sufficient
fund in it.

Domain Requirements

« Domain derived from the

application domain of the system instead of specific

requirements are

user needs.

¢ These requirements make use of domain
terminologies specific to the existing domain
concept.

¢ The domain requirements may be in the form of
new functional requirements, constraints on existing
functional requirement or guidance on how to carry
out certain computation.

e These are the specialised requirements and hence
software engineers find it difficult to co-relate the
domain requirements with the system requirements.

« It is important to specify the domain requirements
otherwise the system will not work properly.

Example Domain requirements for the library

system.

There should be user interface for handling the
databases. These interfaces should be according to
some international standard.

o If there is copyright restriction on some document
then it should get printed locally on the server. The
copies of such document should not get created.

]

T

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering

2-10

Software Requirement Engineering

Difference between Functional and Non
Functional Requirements

Non functional

Functional requirements ;
requirements

The functional
requirements specify the
features of the software
system,

The non functional
requirements specify the
properties of the software
system.

Non functional
requirements describe how
the product should
perform.

Functional requirements
describe what the product
must do,

The functional
requirements specify the
actions with which the
work is concerned.

The non functional
requirements specify the
experience of the user
while using the system.

Example : For a library
management system,
allowing user to read the
article online is a

Example ; For a library
management system, for a
user who wishes to read
the article online must be

functional requirement. authenticated first.

2.10 | Eliciting Requirements

MSBTE : Summer-16, Marks 4

» Questioning is useful only at inception of the

project but for detailed requirement elicitation it is
not sufficient. During requirement elicitation certain
activities such as problem solving, elaboration,
negotiation and specification must be carried out.
Various ways by which the requirement elicitation
can be done are -

1. Collaborative requirement gathering

2. Quality function deployment

. Use scenarios

3
4. Elicitation work product

Let discuss these aspects
elicitation in detail -

Collaborative Requirements Gathering

» Collaborative requirement gathering is done using
collaborative, team-oriented approach.

us of requirement

» Facility Application Specification Technique (FAST)
is an approach in which joint team of customers
and developers work to identify the
problem, propose elements of solution, negotiate

together

different approaches and prepare a specification for
preliminary set of solution requirements.

~

T

Guideline for FAST approach -

1. A meeting should be conducted and attended by
both software engineers and customers. The place
of meeting should be a neutral site.

12

Rules for preparation and participation must be
prepared.

3. An agenda should be prepared in such a way
that it covers all the important point as well as it
allows all the new innovative ideas.

4. A facilitator controls the meeting. He could be
customer, developer or outsider.

5. A definition mechanism is used. The mechanism
can be work sheets, flip charts, wall stickers,
electronic bulletin board,

chart room, wvirtual

forum.

6. The goal is to identify the problem, decide the
elements of solution, negotiate different
approaches and specify the preliminary set of
solution requirements.

» In FAST meeting each FAST attendee is asked to
prepare - a list of objects, list of services and a list
of constraints,

» The list of objects consists of all the objects used in
the system, the objects that are produced by the
system and the objects that surround the system.

e The list all the required

functionalities that manipulate or interact with the
objects,

of services contain

* The list of constraints consists of all the constraints
the
requirement, speed accuracy etc.

of system such as cost, rules, memory

» As the FAST meeting begins, the very first issue of
discussion is the need and justification for the new
product. Once everyone agrees upon the fact that
the product is justified, each participant has to
present his lists.

» These lists are then discussed, manipulated and
these modified or refined lists are combined by a
group.

» The combined list eliminates redundant entries adds
new ideas that come up during the discussion. The
combined list is refined in such a way that it helps
in building the system.

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 2-

Software Requirement Engineering

« The combined list should be prepared in such a
way that a "consensus lists" can be prepared, for
object, services and constraints,

¢« A team is divided into subteams. Each subteam
develops a minispecification from each consensus
list.

« Finally a complete draft specification is developed.

For example -

+ A FAST team is working on a commerical product.
A following product description is given as below -
= "Nowadays the market for video game is

growing rapidly. We would like to enter this

market with more features, like attractive GUI,

multiple sound setting, realistic (3D) animations.

This product is tentatively called 'Gamefun'. At

the end of game, scores of each player should be

displayed".

» The FAST attendee prepare following lists -

1) List of objects - Display, menu, a sound, an
event (moving from one level to another)
and so on.

2) List of services - Setting sounds, setting
colors in GUI, HELP, instructions for
players, score card etc.

3) List of constraints - Must be user friendly,
must have high speed, must accommodate
less size, should have less cost.

e The minispecification for Menu (object) can be as

given below -

» Contains 'Start game' and 'exit’ options.

» List of all functional keys with corresponding
functionality.

= Software provides interaction guidance, quick
tour, sound controls.

= All players will play or interact through keys.

= Software provides facility for change in the look

of GUIL

» Software displays scores of each player.

Quality Function Deployment

« Quality function deployment is a quality
management technique which translates the

customer needs and wants into technical
requirements. This technique was introduced in
Japan.

« Under quality function deployment three types of

requirements can be defined -

= NOrmal requirements

Types of
requirements
under QFD

Expected requirements

L= Excited requirements

Normal requirements

» The requirements as per goals and objectives of the
system are called normal requirements. These
requirements can be easily identified during the
meeting with the customer.

= For example Handling mouse and keyboard
events for any GUI based system.

Expected requirements

» These types of requirements are such requirements
which system must be having even if customer did
not mention about them. These are such
requirements that if they are not present then the
system will be meaningless.

» For example : A software package for presentation
(like Microsoft Power Point) must have option of
‘new slide insert’, so that user will be able to insert
a new slide at any position during his presentation.

Exciting requirements :

« When certain requirements are satisfied by the
software beyond customer's expectations then such
requirements are called exciting requirements.

« For example : Spell check facility in Microsoft Word
is an exciting requirement. Various types of
deployments that can be conducted during software
development process are -

« Function deployment : For determining the value of
each function this deployment can be done.

« Information deployment : After identifying various
functionalities events and data objects must be
identified.

» Task deployment : The task associated with each
function must be identified.

)

?’ TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 2-12 Software Requirement Engineering
e Value analysis : Identify the priorities of « A list of various stakeholders such as customer,
requirements. The technique of QFD requires proper end-users, technical persons, and many others who
interaction with customer. participate during requirement elicitation.
Usage Scenarios A technical description of system environment
e During requirement gathering overall vision for + A list of requirements and constraints.
systems functions and features get developed. « A set of usage scenarios along with operating
o In order to understand how these functions and conditions.
features are used by different classes of end users, * The prototype that may get developed for defining
developers and users create a set of scenarios. This . -
> ; ; the requirements in better manner.
set identifies the usefulness of the system to be .)
- : I'hese work products are then reviewed by all the
constructed. This set is normally called as use-cases. ’
y wicks ; eople who participate in requirement elicitation,
e The use-cases provide a description of how the PEoF P F 9
system will be used. .
Board Question
Elicitation Work Product 1. What is requirements elicitation ? What are the
: wroblems faced in eliciting requirements ?
Following are some work products that get produced } J &7eq
. ; WORPPRL MSBTE : Summer-16, Marks 4
during requirement elicitation -
« A statement of feasibility study performed in order :
. ' y study p 2.11 | Developing Use Cases
to find the need of the project. MSBTE : Summer-16, 18, Marks 4
« Statement for the scope of the system. :
P y Ex. 2111 : Draw a use case diagram for a Bank
Management Systen.
Sol. :
Banking System |

Customer

ZIN

Logging in
Deposit Amount

Amount

Get Account
Balance
Transfer of
Amount

Bank

NV

Fig. 2.11.1

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 2-13 Software Requirement Engineering

Ex. 2.11.2 Draw a use case diagram for music system.
MSBTE : Summer-16, Marks 4

Sol. :

Electronic Music Files Management System

Song Unavailable
<<eXtend>i,..

% /
== Start play
User \\ =<include==
Play a library). i Play Song
Randomize Order Delete a Song

/=<include>>
__=<include=> /

X Destroy a song

<<include>> "

Delete Library
: Add a Song

<<include>= ..

Create Library)
Create CD

CD

Stop Play

Fig. 2.11.2

Ex. 2.11.3 : Draw the use case diagram for taking "photocopy of ans books from msbte” website.

MSBTE : Summer-18, Marks 4

== TECHNICAL PUBLIGATIONS - An up thrust for knowledge
o

Software Engineering

Sol. :

Student

.

Software Requirement Er

=<extend>==.

/AN

Change
Password

Authenticate
User

Apply for
==zextend>> Revaluation

Fig. 2.11.3

Ex. 2.11.4 : Draw use case diagram for railway ticket reservation systen.

Sol. :

Passenger

ZANN

Railway Ticket Reservation System

=<extend>=> (Seat Unavailable
ViewSeat =
Availability

ViewSchedule

Credit Card
Payment

<<include>> ~
{ -
¢ <<include>>
!

Payment validation

-
-

Cancel reservation

Reserve a Seat
<<include>> | ~ ~ g<include>>

h\\

Booking System

CardValidation
System

Fig. 2.11.4

TECHNICAL PUBLICATIONS - An up thrust for knowledge

o
—
u

Software Requirement Engineering

Software Engineering

Ex. 2.11.5 ;: Consider an aqutomated soda machine that gives cool drinks. Draw use case model of the soda machine,
8 !

Sol. :

<|nclude>>

Soda Vending Maching

< Insufficient
/ Amount
Customer\

<<extend>>

Select Cold
Drink Product

Dispense \
Change IS———:

Dispense Service System
Soda

Fig. 2.11.5

2.12 | Building Requirement Models

» Requirement analysis is an intermediate phase between system engineering and software design.

« Requirement analysis produces a software

Analysis Design

specification.
F model model

How is requirement analysis helpful ?

» Analyst - The requirement analysis helps the
‘analyst' to refine software allocation. Using
requirement analysis various models such as
data model, functional model and behavioral

model can be defined.

» Designer - After requirement analysis, the

System Requirement Software

designer can design for data, architectural oo : :
engineering analysis design

interface and component level designs.

« Developer - Using requirements specification
P 8 req ents s Fig. 2.12.1 Requirement analysis : An intermediate step

and design the software can be developed.

What are requirement analysis efforts ?
1. Problem recognition

» The requirement analysis is done for understanding the need of the system. The scope of the software

in context of a system must be understood.

?’ TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering

ro
'

Software Requirement Engineering

2. Evaluation and synthesis

* Following are the tasks that must be done in
evaluation and synthesis phase.
i) Define all externally observable data objects

evaluate data flow.

ii) Define software functions.
iif) Understand the behaviour of the system.
iv) [Establish system interface characteristics.
v) Uncover the design constraints.

3. Modelling

e After evaluation and using data,
functional and behavioral domains the data model,
functional model and behavioral model can be built.

synthesis,

4. Specification
«» The requirement specification (SRS) must be built.
5. Review

» The SRS must be reviewed by project manager and
must be refined.

Overall Objectives

« Following are three objectives of analysis model -

1. Describe customer requirement.
2. Create a basis for software design.

3. Prepare valid requirements list.

Analysis model bridges the gap between system
description and design model. The system
description describes overall system functionality
describes the software

and design model
architecture, user interface and component level

structure.

» There is no clear division of analysis and design
tasks. Some design can be carried out during
analysis and some analysis might be conducted
during the design of the software.

Part III : Software Requirement Specification

Definition of Software Requirement
Specification (SRS)
« Software Requirements Specification (SRS) is a kind
of document which includes both definition and
specification of requirements.

Need for SRS

» Following are some advantages of SRS which
clearly specify the need for SRS.
1. SRS establishes an agreement between the client
and supplier about the nature of software
product.

I~

SRS can be used for validating the final product
because the software requirements are specified
in SRS. And whether the final product meets
these requirements or not - this can be tested
using SRS.

3. For producing high quality software high
quality SRS must be produced. Hence it is said
that high quality SRS is a prerequisite for high
quality software.

4. High quality SRS reduces the cost of software
development.

@ Format

» Tracking the team's progress throughout the
development activity.

o Typically software designers use IEEE STD 830-1998
as the basis for the entire Software Specifications.
The standard template for writing SRS is as given
below.

Document Title
Author(s)
Affiliation
Address
Date
Document Version

1. Introduction

1.1 Purpose of this document Describes the

purpose of the document.

1.2 Scope of this document : Describes the scope of
this requirements definition effort. This section
also details any constraints that were placed
upon the requirements elicitation process, such as
schedules, costs.

1.3 Overview Provides a brief overview of the
product defined as a result of the requirements

elicitation process.

“%“’ TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering

[
~1

Software Requirement Engineering

2. General Description

¢ Describes the general functionality of the product
such as similar system information, user
characteristics, user objective, general constraints

placed on design team.

e Describes the features of the user community,
including their expected expertise with software
systems and the application domain.

3. Functional Requirements : This section lists the
functional requirements in ranked order. A functional
requirement describes the possible effects of a
software system, in other words, what the system
must accomplish. Each functional requirement should
be specified in following manner -

1. Description : A full description of the

requirement.

2. Criticality Describes how essential this

requirement is to the overall system.

3. Technical issues Describes any design or
implementation issues involved in satisfying this

requirement.

4. Cost and schedule :
absolute costs of the system.

Describes the relative or

5. Risks : Describes the circumstances under which
this requirement might not able to be satisfied.

6. Dependencies with other requirements

Describes interactions with other requirements.

7. Any other appropriate.

4. Interface Requirements : This section describes
how the software interfaces with other software
products or users for input or output. Examples of
such interfaces include library routines, token
streams, shared memory, data streams and so forth.
4.1 User Interfaces
interfaces with the user.
411 GUI
interface if present. This section should

Describes how this product

Describes the graphical user

include a set of screen dumps to illustrate
user interface features.

4.1.2 CLI : Describes the command-line interface
if present. For each command, a
description of all arguments and example

values and invocations should be provided.

413 API Describes the application
programming interface, if present.

4.2 Hardware Interfaces Describes interfaces to

hardware devices.

4.3 Communications Interfaces : Describes network

interfaces.

4.4 Software Interfaces : Describes any remaining

software interfaces not included above.

5. Performance Requirements : Specifies speed and

memory requirements.

6. Design Constraints : Specifies any constraints for
the design team such as software or hardware
limitations.

7. Other Non Functional Attributes : Specifies any
other particular non functional attributes required by
the system. Such as :

7.1 Security

7.2 Binary Compatibility

7.3 Reliability

7.4 Maintainability

7.5 Portability

7.6 Extensibility

7.7 Reusability

7.8 Application Compatibility

7.9 Resource Utilization

7.10 Serviceability

... others as appropriate.

8. Operational Scenarios : This section should
describe a set of scenarios that illustrate, from the
user's perspective, what will be experienced when

utilizing the system under various situations.

9. Preliminary Schedule : This section provides an
initial version of the project plan, including the major
tasks to be accomplished, their interdependencies,
and their tentative start/stop dates.

10. Preliminary Budget : This section provides an
initial budget for the project.

? TECHNICAL PUBLICATIONS - An up thrust for knowledge

[
ot
w

Software Engineering

Software Requirement Engineering

11. Appendices

11.1 Definitions, Acronyms, Abbreviations :
Provides definitions terms and acronyms, can
be provided.

11.2 References : Provides complete citations to all
documents and meetings referenced.

2.16 | Characteristics

MSBTE : Summer-15,16,17, Winter-16, 17, Marks 4

« Following are some characteristics of a good SRS -

1. Correct : The SRS must be correct. That means
all the requirements must be correctly
mentioned, or the requirements must be realistic
by nature. For instance : While developing a
word processing software, if there is a
requirement for spell check facility and if
software cannot find the spelling errors from the
document, then that means requirement is
incorrect.

2. Complete : To make the SRS complete, it should
specify the purpose of SRS.

3. Unambiguous : When requirements are
understood correctly then only unambiguous
SRS can be written. Unambiguous specification
means only one interpretation can be made
from the specified requirements. If for particular
term there are multiple meanings then, those
terms should be mentioned in glossary with
proper meaning,.

4. Consistent : If there are not conflicts in the
specified requirements then SRS is said to be

consistent.

Stability : In SRS, it is not possible to specify all
the requirements. The SRS must contain all the
essential requirements. Each requirement must
be clear and explicit.

Verifiable : The SRS should be written in such
a manner that the requirements that are
specified within it must be satisfied by the
software. For instance - "The GUI should look
good". This requirement is not verifiable because
one cannot specifically define "what is mean by
good 2"

Modifiable : Writing SRS is an iterative process.
Even after specifying the requirements they can
be modified later on if there is a change in user
requirements. While modifying the SRS it is
important to preserve the completeness and
consistency in requirements.

Traceable : If origin of requirement is properly
given or references of the requirements are
correctly mentioned then such a requirement is
called as traceable requirement.

Board Questions

1.

B

What is SRS ? MSBTE : Summer-15,17,Marks 4
What is SRS ? Explain importance of SRS.
MSBTE : Summer-16, Marks 4

Explain general format of Software Requirenent
Specification (SRS). MSBTE : Winter-16, 17, Marks 4

aaa

? TECHNICAL PUBLICATIONS - An up thrust for knowledge

UNIT- I

Software Modelling and Design

3.1 | Translating Requirement Model into
Design Model

MSBTE : Winter-16,17, Summer-15, 16, 17, Marks 8

* Software software

engineering and it is applied irrespective of any

design is at the core of

process model.

» After analysing and modelling the requirements,
software design is done which serves as the basis
for code generation and testing.

« Software of translating

analysis model into the design model.

designing is a process

» The analysis model is manifested by scenario based,
class based, flow oriented and behavioural elements
and feed the design task.

» The classes and relationships defined by CRC index
cards and other useful class based elements provide
the basis for the data or class design.

» The architectural design defines the relationship
between major structural elements of the software.
The architectural styles and design patterns can be

used to achieve the requirements defined for the
system.

software

The interface design describes how
communicates with These systems are
interacting with each other as well as with the

systems.

humans who operate them. Thus interface design
represents the flow of information and specific type
of behaviour. The usage scenarios and behavioural
models of modelling provide the
information needed by the interface design.

analysis

The component-level design transforms structural
elements of software architecture into procedural
description of software module. The information
used by the component design is obtained from
based based model and

behavioural model.

class model, flow

Software design is important to assess the quality
of software. Because design is the only way that we
can accurately translate the user requirements into
the finished software product.

Fig. 3.1.1 Translating analysis model into the design model

(B3-1)

Mapping of analysis to design model
qents Floy, Ry o Cleass-I:.a':ed
e, ; Component
« Data flow » Flow-oriented tovel
diagram elemenis v_en
% » Behavioral 9
& diagram % elements
Y « Processing s Scenario-based
narratives elements lrg:rface
5 sign
Analysis = |+ Flow-oriented Interface 2
model elements design
z Behavioral
o\ *Analysis diagrams F eit:ew:t; Architectural design
% package $ Somencs « Flow-oriented
) diagram
« CRC models (‘9 elements Architectural
« Collaboration @ * Class-based design 8
diagrams o e Data/class diagram
Bena . ?333-:'383“ D;.tal class
g Design model

Software Engineering

Software Modelling and Design

« Without design unstable system may get developed.
Even if some small changes are made then those
changes will go fail. It will become difficult to test
the product. The quality of the software product can
not be assessed until late in the software process.

Data Modeling

e Data modelling is the basic step in the analysis
modelling. In data modelling the data objects are
examined independently of processing.

« The data domain is focused. And a model is created
at the customer’s level of abstraction.

* The data model represents how data objects are
related with one another.

Data Object, Attributes and Relationships

What is data object ?

e Data object is a set of attributes (data items) that
will be manipulated within the software (system).

« Each instance of data object can be identified with
the help of unique identifier. For example : A
student can be identified by using his roll number.

» The system cannot perform without accessing to the
instances of object.

« Each data object is described by the attributes which
themselves are data items.

Data object is a collection of attributes that act as an

aspect, characteristic, quality or descriptor of the object.

Object : Vehicle

Attributes:
Make
Model
Color
Owner
Price

Fig. 3.1.2 Object
The vehicle is a data object which can be defined or
viewed with the help of set of attributes.

Typical data objects are

« External entities such as printer, user, speakers.

» Things such as reports, displays, signals.

¢ Occurrences or events such as interrupts, alarm,
telephone call.

®

« Roles such as manager, engineer, customer.

« Organizational units such as division, departments.
« Places such as manufacturing floor, workshops.

« Structures such as student records, accounts, file.

What are attributes ?
Attributes define properties of data object

Typically there are three types of attributes -

1. Naming attributes - These attributes are used to
name an instance of data object. For example : In
a vehicle data object make and model are naming
attributes,

2. Descriptive attributes - These attributes are used
to describe the characteristics or features of the
data object. For example :
color is a descriptive attribute.

In a vehicle data object

3. Referential attribute - These are the attributes
that are used in making the reference to another
instance in another table. For example : In a

vehicle data object owner is a referential attribute,

What is relationship ?

Relationship represents the connection between the
data objects. For example

The relationship between a shopkeeper and a toy is
as shown below

Here the toy and shopkeeper are two objects that
share following relationships -

« Shopkeeper orders toys. e Shopkeeper sells toys.

« Shopkeeper shows toys. e Shopkeeper stocks toys.

Cardinality and Modality

Cardinality in data modeling, cardinality specifies how
the number of occurrences of one object is related to the
number of occurrences of another object.

* One to one (1 : 1) - One object can relate to only
one other object.
*« One to many (1
many objects.

« Many to many (M N) - Some number of
occurrences of an object can relate to some other
number of occurrences of another object.

: N) - One object can relate to

| Modality indicates whether or nof a particular data
{object must participate in the relationship.

‘g" TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 3-3 Software Modelling and Design
Cardinality : Single customer Cardinality : Many purchase
waiting for purchase (actions is possible.
11 is provided with A Purchase
Customer - E ation

Modality : For purchase action
customer is must
(modality 1)

Modality : It is optional,
there may not be
any purchasing
(modality 0)

Fig. 3.1.3 Cardinality and modality

Modality of a relationship is 0 (zero) if there is no
explicit need for the relationship to occur or the
relationship is optional. The modality is 1 (one) if an
occurrence of the relationship is mandatory.

Example : Refer Fig. 3.1.3.

Board Questions
1. With neat diagram explain translation of analysis

model into design model. [T LR

2, Describe data objects and data attributes.

MSBTE : Summer-15, Marks 4

Explain cardinality and modality with exaniple,

MSBTE : Summer-15, Marks 4

4. What is data modeling ? Explain the terms

cardinality and modality. R A L

5. Compare cardinality and modality.

MSBTE : Winter-16,Summer-17, Marks 4

6. Explain medality with the help of example.

w

MSBTE : Winter-17, Marks 4

@ Analysis Modeling

MSBTE : Winter-16,17, Summer-15, 16, 17, 18, Marks 8

Requirement software

specification.

anslysis

produces a

The requirement analysis helps the 'analyst' to refine

software allocation. Using requirement analysis

various models such as data model, functional model
and behavioral model can be defined.

» Following are three objectives of analysis model -

1. Describe customer requirement.
2. Create a basis for software design.

3. Prepare valid requirements list.

« Analysis model bridges the gap between system
description and design model. The
description describes overall system functionality

design model describes the software

architecture, user interface and component level

system
and

structure.

e There is no clear division of analysis and design
tasks. Some design can be carried out during
analysis and some analysis might be conducted
during the design of the software.

Elements of Analysis Model

Structured approach Object oriented approach
The analysis is made on
data and processes in
which data is transformed
as separate entities.

The analysis is made on
the classes and interaction
among them in order to
meet the customer
requirements.

Unified Modelling
Language (UML) and
unified processes are used
in object oriented
modelling approach.

Data objects are modelled
in such a way that data
attributes and their
relationship is defined in
structured approach

But the commonly used analysis model combines
features of both these approaches because the best

suitable analysis model bridges the software

requirements and software design.

-

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering

Software Modelling and Design

Following are the elements of analysis model -
* Scenario based elements

+ Flow-oriented elements

« Behavioural elements

o Class based elements

Following Fig. 3.2.1 illustrates the elements of
analysis model.

« Control flow
diagram

The
analysis
model

« State

diagram
» Sequence
diagram

« Collaboration
diagrams

Fig. 3.2.1 Analysis model

Board Questions

1. Write importance of analysis modeling.

MSBTE : Summer-15, 17, Marks 4

2. With a neat diagram explain analysis model.

MSBTE : Winter-15, Marks 4

3. Explain the various elements of analysis modeling

MSBTE : Winter-15, Marks 6

4. Describe the terms : Analysis modeling and design

MSBTE : Summer-16, Marks 4
Describe four principles of analysis modeling.

MSBTE : Winter-16, Summer-18, Marks 4
6. Explain analysis modeling. LRI

List and explain the elements of analysis model

in detail.

modeling.

U

~N

with neat labeled diagram.

MSBTE : Summer-18, Marks 8
@ Design Modeling

MSBTE : Winter-15, 16,Summer-15, 17, Marks 4

Software design is model of software which translates
the requirements into finished software product in
which the details about software data structures,
architecture, interfaces and components that are
necessary to implement the system are given.

~

Characteristics of Good Design

I. The good design should implement all the
requirements that are explicitly mentioned in the
analysis model. It should accommodate all the
implicit requirements demanded by the customer.

2. The design should be simple enough so that the
code developer, code tester as well as those who
are supporting the software will find it readable
and understandable.

3. The design should be comprehensive. That
means it should provide a complete picture of
software, addressing the data, functional and
behavioural domains from an implementation
perspective.

Fundamental Design Concepts

The software design concept provides a framework
for implementing the right software.

Various issues that must be considered during
software design are -

(1) Abstraction

The abstraction means an ability to cope up with the
complexity. Software design occurs at different levels
of abstraction. At each stage of software design
process levels of abstractions should be applied to
refine the software solution. At the higher level of
abstraction, the solution should be stated in broad
terms and in the lower level more detailed
description of the solution is given.

(2) Modularity
» The software is divided into separately named
and addressable components that called as
modules,

Monolithic software is hard to grasp for the
software engineer, hence it has now become a
trend to divide the software into number of
products. But there is a co-relation between the
number of modules and overall cost of the

software product.

(3) Architecture
» Architecture means representation of overall
structure of an integrated system.

"’é“' TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering

Software Modelling and Design

« In architecture various components interact and
the data of the structure is used by wvarious
components.

» In architectural design various system models can
be used and these are -

Model Functioning

Structural model Overall architecture of the system
can be represented using this

model,

Framework model This model shows the architectural
framework and corresponding
applicability.

This model shows the reflection of
changes on the system due to
external events.

Dynamic model

Process model The sequence of processes and their
functioning is represented in this

model.

Functional model The functional hierarchy occurring
in the system is represented by this

model.

(4) Refinement

» Refinement is actually a process of elaboration.

* Stepwise refinement is a top-down design strategy
proposed by Niklaus WIRTH.

» The architecture of a program is developed by
successively refining levels of procedural detail.

e The process of program refinement is analogous
to the process of refinement and partitioning that
is used during requirements analysis.

» Abstraction and refinement are complementary
concepts. The major difference is that - In the
abstraction low-level details are suppressed.
Refinement helps the designer to elaborate
low-level details.

(5) Pattern

According to Brad Appleton the design pattern can
be defined as - It is a named nugget (something
valuable) of insight which conveys the essence of
proven solution to a recurring problem within a
certain context.

In other words, design pattern acts as a design
solution for a particular problem occurring in specific
domain. Using design pattern designer can determine
whether-

& Pytianeain be nengable:

T

« Pattern can be used for current work.

« Pattern can be used to solve similar kind of
problem with different functionality.

(6) Information Hiding

[nformation hiding is one of the important property
of effective modular design. The term information
hiding means the modules are designed in such a
way that information contained in one module cannot
be accessible to the other module (the module which
does not require this information). Due to information
hiding only limited amount of information can be
passed to other module or to any local data structure
used by other module.

The advantage of information hiding is basically in
testing and maintenance. Due to information hiding
some data and procedures of one module can be
hidden from another module. This ultimately avoids
introduction of errors module from one module to
another. Similarly one can make changes in the
desired module without affecting the other module.

(7) Functional Independence

» The functional independence can be achieved by
developing the functional modules with
single-minded approach.
By using functional independence functions may
be compartmentalized and interfaces are
simplified.
Independent modules are easier to maintain with
reduced error propagation.

The major benefit of functional independence is in
achieving effective modularity.

The functional independence is assessed using two
qualitative criteria - Cohesion and coupling.
Cohesion : A cohesive module performs only "one
task”" in software procedure with little interaction
with other modules. In other words cohesive
module performs only one thing.

Coupling : Coupling effectively represents how
the modules can be "connected” with other
module or with the outside world.Coupling is a
measure of interconnection among modules in a
program structure.

(8) Refactoring
oIt is defined refactoring as "The process of
changing a software system in such a way that
the external behaviour of the design do not get
changed, however the internal structure gets

improved".

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 3-6 Software Modelling and Design

« Benefits of refactoring are -
1. The redundancy can be achieved.

2. Inefficient algorithms can be eliminated or can be replaced by efficient one.
3. Poorly constructed or inaccurate data structures can be removed or replaced.

3
4. Other design failures can be rectified.

Board Question

1. What are the characteristics of good design ?
2. With reference to software design give the meanings of

i) Modularity ii) Functional independence iii) Refactoring iv) Information hiding
Explain following with reference to design concepts in design nodeling.

i) Abstraction it) Functional independence MSBTE : Winter-16, Marks 4

Lo

4]

| Design Notations

MSBTE : Winter-17, Summer-15, 17, Marks 4

Data Flow Diagram (DFD)

» Behavioral models are used to describe the overall behavior of a system. There are two types of
models that depict the behavior of the system

» The data flow model represents the flow of data and state chart diagram represent the states that are
occurring in the system.

2 Data flow model
» These models can be used separately on together depending upon nature
of application.
« Let us discuss these models in detail - - State chart diagram

3.4.1.1| Data Flow Diagram

« The data flow diagrams depict the information flow and the transforms that are applied on the data
as it moves from input to output.

» The symbols that are used in data flow diagrams are -

» The data flow diagrams are used to represent the system at any level of abstraction.

e The DFD can be partitioned into levels that represent increase in information flow and detailed
functionality.

« A level 0 DFD is called as ‘fundamental system model’
or ‘context model’. In the context model the entire
software system is represented by a bubble with input

and output indicated by incoming and outgoing Frocess

arrows.
» Each process shown in level 1 represents the sub

functions of overall system. — Data store
¢ The number of levels in DFD can be increased until

every process repretsents the basic functionality. Flow of data (may be input
¢ As the number of levels gets increased in the DFD, — ™ data of output data)

each bubble gets refined. The following figure shows

the leveling in DFD. Note that the information flow External

continuity must be maintained. entity

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engincering 3-7 Software Modelling and Design

Designing Data Flow Diagrams
» The data flow diagrams are used to model the information and function domain. Refinement of DFD
into greater levels helps the analyst to perform functional decomposition.

e The guideline for creating a DFD is as given in Fig. 3.4.1.

Level 0 DFD
0
X
Entity A nformation = Entity B
y system

Level 1 DFD

Entity A

Data store

Level 2 DFD

Data store

Level 3 DFD

Fig. 3.4.1 Levels of DFD

"5\" TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 3-8 Software Modelling and Design

1. Level 0 DFD i.e. Context level DFD should depict the system as a single bubble.

o

. Primary input and primary output should be carefully identified.
. While doing the refinement isolate processes, data objects and data stores to represent the next level.

3
4. All the bubbles (processes) and arrows should be appropriately named.
5. One bubble at a time should be refined.

6

. Information flow continuity must be maintained from level to level.

« A simple and effective approach to expand the level 0 DFD to level 1 is to perform “grammatical
parse” on the problem description. Identify nouns and verbs from it. Typically nouns represent the
external entities, data objects or data stores and verbs represent the processes. Although grammatical
parsing is not a foolproof but we can gather much useful information to create the data flow

diagrams.

Rules for designing DFD

1. No process can have only outputs or only inputs. The process must have both outputs and inputs.

Fig. 3.4.2

2. The verb phrases in the problem description can be identified as processes in the system.

/ i
P

X
N

N
N
N
£
7

Fig. 3.4.3

? TECHNICAL PUBLICATIONS - An up thrust for knowiedge

Software Engineering 3-9 Software Modelling and Design

/

There should not be a direct flow between data stores and external entity. This flow should go
through a process.

Fig. 3.4.4

w

4. Data store labels should be noun phrases from problem description.

5. No data should move directly between external entities. The data flow should go through a
Process.

N\
N

Source Sink Source Sink

Fig. 3.4.5

6. Generally source and sink labels are noun phrases.

~

Interactions between external entities is outside scope of the system and therefore not represented

in DFD.
8. Data flow from process to a data store is for updation/insertion/deletion.
9. Data flow from data store to process is for retrieving or using the information.
10. Data flow labels are noun phrases from problem description.

Ex. 3.4.1 : Draw a dataflow diagram level 0 and level 1 for a Book Publishing House.
Sol.:

Level 0 DFD :

Request for Book [Book Publishing House | Response
Order Processing

System

Customer Customer

TECHNICAL PUBLICATIONS - An up thrust for knowledge

o»&f'

Software Engineering 3-10 Software Modelling and Design

Level 1 DFD :

f Get Book
Request for Book Information Books
| Customer I Database
Credit Check
Customer Information =
Books Order

Database

Bunch of
Orders

Assemble
Purchase Orders
to send to
Warehouse

Shipping Order Response

Warehouse

Customer

Ex. 3.4.2 Draw DFD level 0 and level 1 for Hotel management systent. MSBTE : Winter-16, Marks 6

Sol. : Level 0 DFD

In this level, the system is designed globally with input and output. The input to food ordering system

are -
1. As customer orders for the food. Hence food order is an input.

The output to food ordering system

are - Order For Food m

1) Receipt. Hotel
2) The food order should be further @(E Magggtmem
given to kitchen for processing the
order. Receipt Management agf‘t:;lgnt
< g Report
3) Bill and management report is
given to restaurant manager. Fig. 3.4.6 Level 0 DFD

Level 1 DFD

In this level, the bubble 0.0 is shown in more detail by various processes. The process 1.0 is for
processing an order. And processes 2.0, 3.0 and 4.0 are for housekeeping activities involved in food
ordering system. To create a management report there should be some information of daily sold items.
At the same time inventory data has to be maintained for keep track of ‘instock’ items. Hence we have
used two data stores in this DFD -

1. Database of sold items 2. Inventory database.

Finally management report can be prepared using daily sold details and daily inventory deplition
amount. This management report is given to restaurant manager.

*‘? TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Enginecring

Software Modelling and Design

Qrder for food
I Customer I
Inventory
Data base data
of sold items
Inventory
data | t
Info. about nventory
daily 40N database
sold items Generate Info. about daily invento
Management D et X T Y
Report epletion Amoun
Management Restaurant
Report Manager

Ex. 3.4.3 For library management system draw level 0

and level 1 DFD. MSBTE : Winter-15, Summer-17, Marks 4

Sol. : In this DFD the whole system is represented

with the help of input, processing and output. The

input can be -

Fig. 3.4.7 Level 1 DFD

i)
i) Student requests for a book hence Book request.
ii) To show identity of the student he/she has to i)
submit his/her Library card, hence Library card.
0.0

Book request Library
Student Library card Information

System

Book

The processing unit can be globally given as

shown in Fig. 3.4.8.

Library information system

The system will produce following outputs -

The demanded book will be given to student.

Hence Book will be the output.

The library information system should display
demanded book information which can be used

by customer while selecting the book.

Demanded Display of
book Info Book

Fig. 3.4.8 Level 0 DFD (Context level DFD)

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 3-12 Software Modelling and Design

Level 1 DFD

Book selves
1.0 6°°Y‘
Book request T
i Delivery Author (s) ist 0
Student Library card ot Aithors
* 77tle
Hook List of
Titles
Tooi demanded
opic Book
List of topics Inf
N
Display of
Book request Book
(By topic)
Demanded
Book ! Book
(Based on topic) by Topic Info

Fig. 3.4.9 Level 1 DFD

In this level, the system is exposed with more processing details. The processes that need to carried out
are -

i) Delivery of Book.

ii) Search by Topic.

These processes require certain information such as List of Authors, List of Titles, List of Topics, the

book selves from which books can be located. This kind of information is represented by data store.

Ex. 3.44 Draw and explain level 0 and level 1 Dataflow diagram for "Online examination Winl7 of form filling on
MSBTE website”. MSBTE : Summer-18, Marks 6

Sol. :

Online
exam W17
system

Request Student

Fig. 3.4.10 Level 0 DFD

== TECHNICAL PUBLICATIONS - An up thrust for knowledge
s

Software Engineering 3-13 Software Modelling and Design

Validate

Student
Registration info.
Fills form
Inputting
data fo Val;_igg;on
form fields Status
Entry ——

acknowlege NGIeETON

Request
for issueing

Icard Issue
Register

Fig. 3.4.11 Level 1 DFD

Ex. 3.4.5 : Draw Level 0 and Level 1 DFD for railway reservation systent

Sol. : Problem description : For an online railway reservation system, passenger can make online booking for
the seats, by specifying the requirements. These requirements are - type of reservation A/C coach, non A/C coach,
two tier or three tier number of seats, name of the train, start and destination of journey. The system then checks
for availability of such requirements. If such a reservation is possible then system generates availability of
reservation. The passengers checks for availability and the charges are then calculated for the selected
requirement, and these are acknowledged to the passenger. If the passenger is satisfied then he confirms the

reservation.

The required DFD can be drawn in levels as follows -

Passenger | Reservation [gm’;‘; \ Reservation [Railway
details details reservation details office
t system

Fare amount

Fig. 3.4.12 Level 0 DFD

= TECHNICAL PUBLICATIONS - An up thrust for knowledge
L

Software Engineering

| W

-14 Software Modelling and Design

Passenger
details

Reservation
details

Processing
request

Passenger Passenger database

Calculated
fare amount

Reservation
details
. Confirmation :
Reservation Reservation .
; of Railway office
details reservation details -/

of reserved
seats

Fig. 3.4.13 Level 1 DFD

Ex. 3.4.6 : Draw Level 0 and Level T DFD for ATM systen.

Sol.: The level 0 DFD is the context level DFD in which only inputs and outputs that are interacting with the
system are given.

Accounts database
Customer S
keypad creen
Printout

ATM dispenser
Control 4 Cash
system dispenser

Card

reader

Fig. 3.4.14 Level 0 DFD

“’g‘” TECHNICAL PUBLIGATIONS - An up thrust for knowledge

Software Engineering 3-15 Software Modelling and Design

More detailing is done in level 1.

Invalid Card reader
returns card

Screen

Card
reader

Ac. no and
PIN

validi

system

Customer Command Display
keypad : customer
for service options
selection

Selects
service

Printout
dispenser

Prepare
printout

enquiry

Checks
Reguest availability Update | Cash Cash
for withdrawal of amount database detaits dispenser

Account
info

info
Account database |

Structured Flow Chart

 The structure chart is a principle tool of structured design.

Fig. 3.4.15

« The basic element in the structured chart is module. Module is defined as a collection of program

statement with four attributes.

« Input and output : What the module gets from the invoker is called input and what the receiver gets

from the module is called output.

» Function : The function processes the input and

produces the output. Ge‘tj:tt:i(éent Calling module (Superordinate)

» Mechanics : The code or the logic by which the

function is carried out.

]
« Internal data : It is the own workspace. Final student name
and marks

Called module (Subordinate)
* The two modules can be connected to each other

by a connector as shown below.

Fig. 3.4.16 Connector

“?’ TECHNIGAL PUBLIGATIONS - An up thrust for knowledge

Software Engineering

3-16 Software Modelling and Design

» The module uses data and flags. The data is processed by different modules. The flag is used as a
control signal. It can be set or reset.

» For example if we have two modules one for getting the employee detail(subordinate) and another
module is for finding the employee name(superordinate). Then the caller module will sent the data as
employee's ID and using that ID the called module will find the name of employee. If the employee
ID is valid then that message will be given by the called module to a caller module. The use of data

and flag can be as shown below.

I Flag going from superordinate to subordinate
Get
employees
details Data going from superordinate to subordinate
Employee I Flag going from subordinate to superordinate
Name
Employee I
D Employee 10 I Data going from subordinate to superodinate
is valid
Find
employee
name

Fig. 3.4.17 Use of flag

« The iterations and decisions on a structured chart is as shown below.

Symbol for showing
decisions

Symbol for showing

Issue tickets to iteration

all passengers

Get Calculate fare Calculate fare
reservation for general first for second Print ticket
details class passenger class passenger

Fig. 3.4.18 Interaction

=5 TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 3-17 Software Modelling and Design

» The example of a structure chart is as given below.

Get fees from
all students

Total for one

student /

Total for all

°\\students

Total for one

Valid student
entry made/ \ student
Calculate total
=
students
- Record
Valid student \ : ;
isvalid Tofal numbero—s /° Total fees
record \ of stuh)
Get valid student
record PRINT
Students o—= - Field
record /’/ ?chvalid
READ EDIT FIELD

Fig. 3.4.19 Structure chart

Decision Tables

Many software applications possess certain modules in which certain complex conditions occur and
such conditions should be responded by taking appropriate actions. Hence decision tables are used in
which complex conditions and corresponding actions are stored in a tabular form. Such decision table
can be used by software program to model the complicated logic. And therefore it is almost impossible
to mis-interpret the decision table.

The decision table is divided into four sections as given below.

Rules
Conditions Condition alternatives
Actions Action entries

The decision tables can associate many independent conditions with several actions in an elegant way.
The rules can be shown by numbering them.

For example : we can create a decision table for following scenario

“ A nationalised bank gives housing loan to his customers with fixed and floating rate of interset. If
the customer chooses the fixed rate of interest and takes a loan of an amount which is less than one
lakhs then apply scheme A structure to him and if the customer chooses floating rate for a loan
amount less than 1 lakhs then apply scheme B structure to him and at the same time apply monthly

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 3-

Software Modelling and Design

charges to him.If the cutomer chooses
floating rate with loan amount > 1 lakhs
then apply monthly charges and give him
other scheme”,

Condition 1 2 3 4 5
Fixed rate ‘ T ‘ F . F ‘ F
Floating rate LS e |)
Loan amount < 1 lakh ol I |
Action
Min monthly charge , F | T |T|F
Apply scheme A A A R
Apply scheme B | F | T |E | F
Other mode of charge F | F T F

In above given decision table T indicates condition is
true and F indicates condition is false. Thus decision
table is useful for representing the conditions and
corresponding actions.

Board Questions

1. What is DFD ? Explain level 1 DFD with
What is DFD ? Explain its synibol.
3. Explain DFD with example.

MSBTE : Winter-17, Marks 4

example.

o

@ Testing

MSBTE : Summer-15, 16, 17, 18, Winter-15, 16, 17, Marks 4

Meaning and Purpose

Definition : Software testing is an activity performed
to uncover errors. It is a critical element of software
quality assurance and represents the ultimate review
of specification, design and coding.

The purpose of software testing is to ensure whether

the software functions appear to be working
according to specifications and performance
requirements.

-

Goals of Testing

The testing goals are,

1. Testing is a process of executing a program with
the intend of finding an error.

!\J

A good test case is one that has high probability
of finding an undiscovered error.

3. A successful test is one that uncovers an as-yet
undiscovered error.

The major testing objective is to design tests that

systematically uncover types of errors with minimum

time and effort.

Testing Principles

Every software engineer must apply following testing
principles while performing the software testing.

1. All tests should be traceable to customer
requirements.
2. Tests should be planned long before testing

begins.
3. The Pareto principle can be applied to software
testing - 80 % of all errors uncovered during
testing will likely be traceable to 20 % of all
program modules.

4. Testing should begin "in the small" and progress
toward testing "in the large".

5. Exhaustive testing is not possible.

6. To be most effective, testing should be conducted
by an independent third party.

Black Box and White Box Testing

Black Box Testing

» The black box testing is also called as behavioural
testing.

« Black box testing methods focus on the functional
requirements of the software. Test sets are derived
that fully exercise all functional requirements.

» The black box testing is not an alternative to white
box testing and it uncovers different class of errors
than white box testing.

* Objective
types of errors.

Black box testing uncovers following

1. Incorrect or missing functions

2. Interface errors 3. Errors in data structures

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 3-

Software Modelling and Design

4. Performance errors

5. Initialization or termination errors

White Box Testing
o In white box testing the procedural details are
closely examined.

« In this testing the internals of software are tested to
make sure that they operate
specifications and designs.

according to

» Objective
on internal structures, logic paths, control flows,

: The major focus of white box testing is

data flows, internal data structures, conditions,

loops, etc.

Difference between black box testing and white
box testing

13:;' Black box testing White box testing

1. Black box testing is called White box testing is called
behavioural testing. glass box testing.

2 Black box testing In white box testing the
examines some procedural details, all the
fundamental aspect of the logical paths, all the
system with little regard internal data structures
for internal logical are closely examined.
structure of the software,

3. During black box testing White box testing lead to
the program cannot be test the program
tested thoroughly.

100 percent.

4. This type of testing is This type of testing is

suitable for large projects. suitable for small projects.

testing

Advantages :

Advantages and disadvantages of black box

1. The black box testing focuses on fundamental
aspect of system without being concerned for
internal logical structure of the software.

ra

The advantage of conducting black box testing is
to uncover following types of errors.

i. Incorrect or missing functions
ii. Interface errors

iii. Errors in external data structures
iv. Performance errors

V. Imtmhzatlon or termmahon _errors

*

Disadvantages :

1. All the independent paths within a module
cannot be tested.

2. Logical decisions along with their true and false
sides cannot be tested.

3. All the loops and the boundaries of these loops
cannot be exercised with black box testing.

4. Internal data structure cannot be validated.

Advantages and disadvantages of white box testing

Advantages :

1. Each procedure can be tested thoroughly. The
internal structures, data flows, logical paths,
conditions and loops can be tested in detail.

2. It helps in optimizing the code.
3. White box testing can be easily automated.

4. Due to knowledge of internal coding structure it
is easy to find out which type of input data can
help in testing the application efficiently.

Disadvantages :

1. The knowledge of internal structure and coding
is desired for the tested. Thus the skilled tester is
required for whitebox testing. Due to this the
testing cost is increased.

~

Sometimes it is difficult to test each and every
path of the software and hence many paths may
go untested.

3. Maintaining the white box testing is very difficult
because it may use specialized tools like code

analyzer and debugging tools are required.

The missing functionality can not be identified.

- Level of Testing

We begin by ‘testing-in-the-small’ and move toward
‘testing-in-the-large’.

Various testing strategies for conventional software

are
1. Unit testing 2. Integration testing

3. Validation testing 4. System testing

? TECHNICAL PUBLIGATIONS - An up thrust for knowledge

Software Engineering 3-20 Software Modelling and Design
Testing Software
strategies development stages
v V
System > E
testing |Sy3tem eﬂglneeﬂngl

testing

Validation

Integration

Requirements

NI

Code

Fig. 3.5.1 Testing strategy

1. Unit testing - In this type of testing techniques
are applied to detect the errors from each
software component individually.

2. Integration testing - It focuses on issues
associated with verification and program
construction as components begin interacting
with one another.

3. Validation testing - It provides assurance that
the software validation criteria (established
during requirements analysis) meets all
functional, behavioural and performance
requirements.

4. System testing - In system testing all system

elements forming the system is tested as a whole.

Unit Testing

« In unit testing the individual components are tested
independently to ensure their quality.

e The focus is to uncover the errors in design and
implementation.

-

-

« The various tests that are conducted during the unit
test are described as below.
1. Module tested proper
information flow in and out of the program.

interfaces are for

2. Local data are examined to ensure that integrity
is maintained.

3. Boundary conditions are tested to ensure that the
module operates properly at boundaries
established to limit or restrict processing.

4. All the basis (independent) paths are tested for
ensuring that all statements in the module have
been executed only once.

5. All error handling paths should be tested.

6. Drivers and stub software need to be developed

to test incomplete software. The “driver” is a
program that accepts the test data and prints the
relevant results, And the “stub” is a subprogram
that uses the module interfaces and performs the

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering

3-21

Software Modelling and Design

Source program

Things to be tested

'
, einterfaces ™,
'+ Local data "\ Generating

Module
> to be
Various | tested
modules

in program
—

structures —l

i * Boundary condition
* Independent path
‘e Error handling paths/

\

Fig. 3.5.2 Unit testing

minimal data manipulation if required. This is illustrated by following Fig. 3.5.3.

Driver
Module
7 Results
Stub Stub Stub

...

= -

, - Interface 2
‘ Local data structures \\
1 Boundary conditions
« Independent paths ’

~ . Emor handiing paths . 4

Fig. 3.5.3 Unit testing environment

7. The unit testing is simplified when a component with high cohesion (with one function) is designed. In such
a design the number of test cases are less and one can easily predict or uncover errors.

Test Documentation
Test Case Template

» Test cases are used to determine the presence of fault in the program. Sometimes even if there is

some fault in our program the correct output can be obtained for some inputs. Hence it is necessary

to exercise those set of inputs for which faults (if any) can be exposed off.

» Executing test cases require money because - i) machine time is required to execute test cases ii)

human efforts are involved in executing test cases. Hence in the project testing minimum number of

test cases should be there as far as possible.

? TECHNICAL PUBLIGATIONS - An up thrust for knowledge

122

-

Software Engineering 3-

710%

2

Software Modelling and Design

e The testing activity should involve two goals -
i) Maximize the number of errors detected.

ii) Minimize the number of test cases.

The selection of test case should be such that faulty
module or program segment must be exercised by
at least one test case.

Selection of test cases is determined by some criteria
which is called as test selection criterion. Hence the
test selection criterion T can be defined as the set of
conditions that must be satisfied by the set of test
cases.

Testing criterion are based on two fundamental
properties - reliability and validity.

A test criterion is reliable if all the test cases detect

same set of errors.

A test criterion is valid if for any error in the
program there is some set which causes error in the
program.

For testing criteria there is an important theorem -
“if testing criterion is valid and reliable if a set
satisfying testing criterion succeeds then that means
program contains no errors’.

Generating test cases to satisfy criteria is complex
task.

The test case specification records the results of the
testing, the conditions used for testing particular
unit. It also specifies the expected test results. It
records the outcome of test cases (Pass/Fail). The
sample structure of a test case specification is as
given below -

Precondition :

Test Test steps Test

Test | Test | case case

case | case | de- | status :::: sile)veefle'::t

id |name |scrip- (Pass/ P i 7
tion Step Expected | Actual Fail)

1

2

3

4

« Test case specification is the major activity in the
testing process. Careful selection of test cases will
help in conducting proper testing.

There why test

specification should be before using them for testing -

Firstly it will assist the tester to reveal as many errors

as possible from the program and secondly the high

quality code can be produced.

Test Plan

Test plan is not a static document. It gets generated
during the development. The main purpose of test
planning is to describe the product tests and to
The

are two basic reasons case

establish the standards in testing process.

structure of test plan is as given below.

1. Testing process

In this section various phases of testing process are
described.

2. Requirements traceability

Testing should be planned to meet all the

requirements.

3. Tested items

The tested products of software are tested.

4. Testing schedule

It includes testing schedule and resource allocation
for this schedule.

5. Test recording procedures

After running the tests, it is necessary to record those
tests in order to check whether tests are conducted
systematically or not.

6. Hardware and software requirements

The required software tools and hardware utilization
is specified under this section.

7. Constraints

All the factors affecting the testing process are listed
under this section.

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 3-2

Software Modelling and Design

Introduction to Defect Report

Defect report is a document that identifies and
describes the defects detected by the tester.
The purpose of defect report is to state the problem

as clearly as possible so that the developer can fix it
easily.

In most of the software companies defect report is
used as a tool in defect management process.

The template of commonly used defect report is as

follows -
1D Unique identifier given to the defect.
Project Name of the Project
Product Name of the product

Release version

Module

Build version

Summary

Description

Steps to replicate

Specify the release version of the

product.

Specify the module name in which
defect is detected.

Specify the build version of the
product where the defect was
detected.

Specify clear and concise summary
of defect.

Specify the detailed description of
the defect, Describe the defect in
simple words. It should be
comprehensive,

Step by step description of the way
to reproduce the defect.

Actual results Specify the actual results you
received when you followed the
steps.

Expected results Specify the expected results from the
steps to replicate.

Attachment Attach any additional information
like screenshots and logs.

Remarks Mention any additional comments

Defect severity

on defect.

Mention the severity of defect.

Defect priority
Reported by

Mention the priority of the defect.

The name of the person who report
the defect.

Assigned to The name of the person who is

assigned to fix the defect.
Status Specify the status of the defect.

Fixed build no. Specify the version of the product

where the defect was fixed.

Test Summary Report

e Test summary report is a document which contains

summary of test activities and final test results.

» After completion of testing cycle, it is very
important to communicate the test results and
findings to project stakeholders(Stakeholders are
people who take part in developing the software
product) so that decisions can be made for the
software release.

Template : The IEEE template for Test Summary

Report is as given below -

Test Summary Report Identifier

[Enter Some type of unique company generated mumber to
identify this summary report, its level and the level of
software that it is related to.]

Summary

[Include basic information about what was tested and what
happened.]

Project Name : [Project name]

« System Name : [System name]

« Version Number : [Version number]

« Test Item : [This should match the item definitions
from the appropriate level test plan that this report
is covering. Any variance from the items specified
in the test plan should be identified.]

+ Additional Comments
comments]

[Enter any additional

Variances

Document any changes from those areas agreed on in
the reference documents, especially in areas that may
cause concern to the group accepting the test results.

Support materials and documents for-
1) Change requests
2) Enhancement requests

3) Incident reports

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 3-24

Comprehensive assessment

[Enter a comprehensive assessment of your interprefation

of how adequate the test was in light of how thorough the

test plan said it should be ? What wasn't tested well

enough ?]

Summary of resultss

[Summarize the test results. Include a detailed

description of any deviations from the original test

plan, design, test case, or expected results. Include

any issues or bugs discovered during the test.]

Evaluation

« Based on evaluation of testing, each identified test
item should be covered in the evaluation.

« Evaluate exist criteria mentioned in the test plan.

« Evaluate final defect status

« Identify and evaluate product risk, quality of test
object, and testing process.

Summary of activities

Cover the planned activities and the changes to those

plans especially in areas where the amount of actual

effort greatly exceeded the planned effort. Include the

reasons for the variances and the possible impact on

the testing staff.

[Include

« Staff time used in Hours per day/week
« Elapsed time versus staff time

« Is staff working excess hours per week
« Costs - planned versus actual

 Variances and the reasons for the change such as -
change in project scope, requirements changes,
newly introduced defects, and so on.]

Approvals

The undersigned acknowledge they have reviewed

the <Project Name> Test Summary Report and agree

with the approach it presents. Changes to this Test

Summary Report will be coordinated with and

approved by the undersigned or their designated

representatives.

[List the individuals whose signatures are desired.
Examples of such individuals are Quality Manager or
Tester. Add additional lines for signature as necessary.
Although signatures arve desired, they are not always
required to move forward with the practices outlined
within this document.]

Sottware Modelling and Design

Signature: Date:

Print Name:

Title:

Role:

Board Questions
1. List four objectives of testing.
MSBTE : Summer 15, Winter-17, Marks 4

™

State eight characteristics of software bugs.
MSBTE : Summer-15,18, Winter-17, Marks 4

3. Describe the attributes of a good test.
MSBTE : Winter-15, Marks 4
4. Explain the testing concept with its Testing
Principles. (any four principles)
MSBTE : Summer-18, Marks 4

5. Compare whife box and black box testing.
MSBTE : Summer 15,18,Marks 4
6. Explain white box festing.

MSBTE : Winter-15, Marks 4

Describe white box and black box testing of
8. List the objective of black box testing.

9. Explain unit testing.
10.What aspects of the software are tested in Unit
11. Describe in brief four level testing process in fest

12.Draw stub and driver mechanism of unit testing

~

software.

Testing ?
execution.

and enlist various types of errors detected by unit
festing. MSBTE : Summer-18, Marks 4

13.Explain test case design in detail.

MSBTE : Summer-17, Marks 4
14.List various testing characteristics.

MSBTE : Summer-17, Marks 4

15.What do you mean by good test ?

MSBTE : Winter-17, Marks 4

QQQ

= TECHNICAL PUBLICATIONS - An up thrust for knowledge

a

UNIT- IV

Software Project Estimation

Management Spectrum
MSBTE : Winter-16, Summer-18

Effective software project management focuses four
P's ie. people, product, process and project. The
successful project management is done with the help
of these four factors where the order of these
elements is not arbitrary. Project manager has to
motivate the communication between stakeholders.
He should also prepare a project plan for the success
of the product.

The People

People factor is an important issue in software
industry. There is a strong need for motivated and
highly skilled people for developing the software
product. The Software Engineering Institute (SEI) has
developed the People Management Capability
Maturity Model (PM-CMM)

By using PM-CMM model software organizations
become capable for undertaking complex applications
which ultimately attracts or motivates the talented
people.

Following are some key practice areas for software
people -

» Recruitment

» Selection

« Performance management

» Training compensation

» Career development

» Organization and work design

¢ Culture development.

The Product

« Before planning the project three
need to be done -

important tasks

4-1)

Product and must be

established.

(1) objectives scope

(2) Alternative solutions should be considered.

(3) Technical and management constraints must
be identified.
e The
communicate with each other in order to define the
objectives and scope of the product.

software developer and customer must

e« This is done as the first step in requirement
gathering and analysis.

» The scope of the project identifies primary data,
functions and behaviour of the product.

» After establishing the objectives and scope of the
product the alternative solutions are considered.

the constraints

budgetary
availability can be identified.

The Process

» The software process provides the framework from
which the be
established.

« Finally, imposed by - delivery

deadline or restrictions, personal

software development plan can

There are various framework activities that needs to

be carried out during the software development
process. These activities can be of varying size and
complexities.

.

Different task sets-tasks, milestones, work products
and quality assurance points enable framework
activities to adapt the software requirements and
certain characteristics of software project.

Finally, umbrella activities such as software quality
(SQA) and Software Configuration
Management (SCM) are conducted. These umbrella
activities depend upon the framework activities.

assurance

Software Engineering

Software Project Estimation

For a successful software project, it is necessary to
understand the mistakes in the project and how to
correct them. John Reel defined ten symptoms to

indicate why the software projects fail -

1. Software developers do not understand the
customer's need.

2. The scope of the project is not defined properly.

3. Change management is done poorly.

4. Business needs change very often.

5. The technological changes are quite often.

6. Users are not co-operative.

7. Unrealistic deadlines are set.

8. Projects do not get sponsored or Sponsorship
gets lost.

9. Lack of skilled people in the project.

10. Project managers do not adopt the best practices

for the projects.

Board Questions
1. Define
characteristics of software.
2. Explain 4 P’'s software project spectrunt.

3. Explain the following management spectrun :

management spectrum and enlist

i) The Process ii) The Project

MSBTE : Winter-16, Marks 4
Metrics for Size Estimation

There are two types of metrics used for size
estimation of the project -
Metrics for size
estimation
LOC based Function point
estimation based estimation

TECHNICAL PUBLICATIONS

LOC based Estimation

« Size oriented measure is derived by considering the
size of software that has been produced.

» The organization builds a simple record of size
measure for the software projects. It is built on past
experiences of organizations.

o It is a direct measure of software

Project LOC Effort (ig,s' (I:;;’) Errors Defects People
ABC 10,000 20 170 400 100 12 B
PQR 20,000 60 300 1000 7 129 32 6

7;\:7277 35,000 65 522 1290 280 87 7

Table 4.2.1 Size measure
« A simple set of size measure that can be developed
is as given below :

= Size = Kilo Lines of Code (KLOC)

» Effort = Person/month

= Productivity = KLOC/person-month

= Quality = Number of faults/KLOC

= Cost = $/KLOC

= Documentation = Pages of documentation /
KLOC

The size measure is based on the lines of code

computation. The lines of code is defined as one
line of text in a source file.

While counting the lines of code the Simplest

Standard is :
= Don’t count blank lines.

= Don’t count comments.

= Count everything else.
s The
accepted method.

size oriented measure is not universally

Advantages

1. Artifact of software development which is easily
counted.

2. Many existing methods use LOC as a key input.

3. A large body of literature and data based on

LOC already exists.

"~ An up thrust for knowledge

Software Engineering 4-3 Software Project Estimation

Disadvantages

1. This measure is dependent upon the programming language.

2. This method is well designed but shorter program may get suffered.
3. It does not accommodate non procedural languages.

4. In early stage of development it is difficult to estimate LOC.

Function Points

» The oriented model is based on functionality of the delivered application.

» These are generally independent of the programming language used.

« This method is developed by Albrecht in 1979 for IBM. It uses function points.

« Function points are derived using :

i

2.

Countable measures of the software requirements domain

Assessments of the software complexity.

How to calculate function point ?

» The data for following information domain characteristics are collected :

1.

Number of user inputs - Each user input which provides distinct application data to the software
is counted.

Number of user outputs - Each user output that provides application data to the user is counted,
e.g. screens, reports, error messages.

Number of user inquiries - An on-line input that results in the generation of some immediate
software response in the form of an output.

Number of files - Each logical master file, i.e. a logical grouping of data that may be part of a
database or a separate file.

Number of external interfaces - All machine-readable interfaces that are used to transmit
information to another system are counted.

» The organization needs to develop criteria which determine whether a particular entry is simple,

average or c‘()mplex.

» The weighting factors should be determined by observations or by experiments.

Weighting factor
Domain Characteristics Count Count
Simple Average Complex
Number of user input X 3 4 6
Number of user output X + 5 7
Number of user inquiries X 3 4 6
Number of files X 7 10 15
Number of external interfaces X 5 7 10
Count Total

TECHNICAL PUBLIGATIONS - An up thrust for knowledge

Software Engineering 4-4

Software Project Estimation

» The count table can be computed with the help of
above given table.

* Now the software complexity can be computed by

answering following These are

complexity adjustment values.

questions.

1. Does the system need reliable backup and
recovery ?

2. Are data communications required ?

3. Are there distributed processing functions ?

4. Is performance of the system critical ?

5. Will the system run in an existing, heavily

utilized operational environment ?
6. Does the system require on-line data entry ?

7. Does the on-line data entry require the input
transaction to be built over multiple screens
or operations ?

8. Are the master files updated on-line ?

9. Are the inputs, outputs, files or inquiries
complex ?

10. Is the internal processing complex ?

11. Is the code which is designed being reusable ?

12. Are conversion and installation included in

the design ?
13. Is
installations in different organizations ?

the system designed for multiple

14, Is the application designed to facilitate change
and ease of use by the user ?
» Rate each of the above factors according to the
following scale :

« Function Points (FP) = Count total x (0.65 +
(0.01 x Sum(F,)))

0 1 2 3 4 5
| T T T] il
No Incidental Moderate Awverage Significant Essential

influence

* Once the functional point is calculated then we can
compute various measures as follows

= Productivity = FP/person-month

= Quality = Number of faults/FP
= Cost = §/FP

= Documentation = Pages of documentation/FP.

Advantages

1. This method is independent of programming

languages.

2. It is based on the data which can be obtained in
early stage of project .

Disadvantages

1) This

method is

more

suitable for business

systems and can be developed for that domain.

2) Many aspects of this method are not validated.

3) The functional point has no significant meaning.

It is just a numerical value.

Comparison between size oriented and function
oriented metrics

’ - - Function oriented
Sr. No. Size oriented metrics e ietas

i Size oriented software Function oriented
metrics is by metrics use a measure
considering the size of functionality
of the software that delivered by the
has been produced. software.

2. For a size oriented Most widely used
metric the software function oriented
organization metric is the function
maintains simple point (FP)
records in tabular computation of the
form. The typical function point is
table entries are : based on
Project name, LOC, characteristics of
Effort, Pages of software’s information
documents, errors, domain and
defects, total number complexity.
of people working on
project.

Ex. 421 Study of requirement specification for ABC

project has produced following results :

Need for 7 inputs,

10 outputs, 6 inquiries, 17 files and 4 external interfaces.
Input and external interface function point attributes are
of average complexity and all other function points
attributes are of low complexily.

Determine adjusted function points asswming complexity
adjustment value is 32.

? TECHNICAL PUBLIGATIONS - An up thrust for knowledge

Software Engineering 4-5 Software Project Estimation

Sol. : Given that :

7 inputs

10 Outputs

6 inquiries

17 files

4 external interfaces

Average complexity for inputs and external interfaces. Low complexity for remaining parameters.
Adjusted function point value 2 () =32.

Let us calculate count total value.

Menecsement Weighting factor

parameters Somnt

>

Simple | Average complex

Number of 7 X 4 28
_ user inputs.

Number of 10 X - 40
user
outputs.

Number of 6 X 3 18

user
inquiries. —— ;
Number of 17 X 7 119
files

28

~

Number of 4 X
external
interfaces.

Count total. 233

Function point = Count total x [0.65 + 0.01 x X(E)]
= 233 x [0.65 + 0.01 x 32]
= 233 x [0.65 + 0.32]
= 233 x 0.97
FP = 226.01

Hence adjusted function point is 226.01.

Project Cost Estimation Approach

Project estimation is one of the basic activity in project planning and measurement. There are three
categories of estimation techniques -

f’g"" TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering

Software Project Estimation

Cost estimation approaches

Heuristic
technique

Overview of Heuristic Technique

e This method makes use of previous project’s

Empirical
technique

Analytical
technique

estimated cost.

e This method assumes the relationships among the
different project parameters, These parameters are
then correlated wusing suitable mathematical
expressions.

* Once the basic parameters are known, the other
parameters can be easily determined by substituting
the value of basic parameters in mathematical
expression.

» COCOMO model is an example of Heuristic
technique.

Analytical and Empirical Estimation

Empirical Estimation

« In empirical estimation technique an educated guess
of project parameters is made. Hence empirical
estimation model is based on common sense.

* However as there are many activities involved in
empirical estimation techniques, this technique is
formalized.

« Delphi technique is used for empirical estimation
techniques.

e This method involves more interactions and

communications between those who are

5. The co-ordinator then calls a group meeting. In
this meeting the experts mainly discuss the
points where their estimates vary widely.

6. The experts again fill out forms anonymously.

7. Again co-ordinator edits and summarizes the
forms, repeating the steps 5 and 6 until the
coordinator is satisfied with overall prediction
synthesized from experts.

» The key to this technique is in expert co-ordinator.

The co-ordinator must be talented enough to
synthesize the diverse and wide ranging statements.

» This method is successful for technical forecasting,.

Analytical Estimation

In analytical estimation technique, the results are
derived by making certain basic assumptions about
the project. Hence analytical estimation technique
have some scientific basis. Halstead's software
science is based on analytical estimation model.

Halstead's Software Science

Halstead's complexity measurement was developed to
measure a program module’s complexity directly
from source code, with emphasis on computational
complexity.

The Halstead's measures are based on four scalar
numbers derived directly from a program’s source
code :

n, is number of distinct operators,
n, is number of distinct operands,
N, is total number of operators,
N, is total number of operands,

From these numbers, five measures are derived :

participating. The procedure is as follows. e Symbol Formuls
1. The co-ordinator presents a specification and
estimation form to each expert. Erograny length B DS Do NG
2. Co-ordinator calls a group meeting in which the Program L e et
SR A 5 ; vocabulary
experts discuss estimation issues with the -
coordinator and each other. Volume V=N * (log, n)
3. Experts fill out forms anonymously. Difficulty D D = (n;/2) * (N,/2)
4. Co-ordinator prepares and distributes a summary Effort E E=sD*V
of the estimates.
= TECHNICAL PUBLICATIONS - An up thrust for knowledge

a

Software Engineering

Software Project Estimation

Halstead's uses certain measures such as program
length, program vocabulary, volume, difficulty and
effort for the given algorithm. By this Halstead's is
trying to show that the program length can be
calculated, volume of the algorithm can be estimated.
The above given table shows how actually these
measures can be obtained.

The Halstead's measures are applicable to operational
systems and to development efforts once the code has
been written. Thus using Halstead's measurement
experimental verification can be performed in
software science.

Program length

The length of a program is total usage of operators
and operands in the program.

Length = N; +N,

Program vocabulary

The program vocabulary is the number of unique
operators and operands used in the program.

Vocabulary - n = n;+n,

pa

Program volume

The program volume can be defined as minimum
number of bits needed to encode the program.

‘ V = Nlog,; n

Length estimation

‘ N = nqlog, n;+n, log, n,

Guideline for calculating operands and operators :
1. All the variables and constants are considered as

operands.

2. Local variables with same name, if occuring in
different functions are counted as unique
operand.

3. Function calls are considered as operators.

4. The looping statements, do ... while, while, for
are operators. The statements if, if ..
operators, The switch

else are
case statements are

considered as operators.

-

5. The words, return, default, continue,

break, sizeof are all operators.

reserve

6. The brackets, commas, semicolons are operators.

7. The unary and binary operators are considered
as operators. The & is considered as operator.

8. In arrays, array name and index are considered
as operands and [] is considered as operator.

9. All hash directives can be ignored.
10. Comments are not considered.

11. In Goto statement, goto is considered as operator
and label as operand.

Ex. 4.3.1
for following C function.
void swap (int a [|, int 1)

Obtain Halstead's length and wvolume nieasure

{
int temp ;
temp = afi] ;
afi] = afi+1];
afi+1] = temp ;
}
Sol.: We will first find out the operands and
operators from above function along with their
occurrences.
Operands Occurrences Operators Occurrences
swap 1 () 1
a 5 i 1
i 5 void 1
temp 3 int 3
1 2 (] 5
' 1
v 4
= 3
+ 2
n=5 N, = 16 n,=9 N, =21

N=N;+N, =16+21=37 n=n,+n, =14
Estimated length = n log, ny +n, log, n,

wn

log2 5+9 log2 9

=5%*232+9%219

= TECHNICAL PUBLICATIONS - An up thrust for knowledge
L

Software Engincering

Software Project Estimation

= 11.60 + 19.77 = 31.37

Volume = Nxlog, n
= 37 * log, (14)
Volume = 37 * 2,63 = 97.64

cocomo

COCOMO is one of the most widely used software
estimation models in the world. This model is
developed in 1981 by Barry Boehm to give an
estimate of the number of man-months it will take to
develop a software product. COCOMO predicts the
efforts and schedule of a software product based on
size of the software. COCOMO stands for
"COnstructive COst MOdel".

COCOMO has three different models that reflect the
complexity -

« Basic model

» Intermediate model

 Detailed model.

Similarly there are three classes of software projects.
1) Organic mode :

simple software projects with a small team are
handled. Such a team should have good application

In this mode, relatively small,

experience to less rigid requirements.

2) Semi-detached projects : In this class an
intermediate projects in which teams with mixed
experience level are handled. Such projects may have
mix of rigid and less than rigid requirements.

3) Embedded projects :

tight hardware, software and operational constraints
are handled.

In this class, projects with

Let us understand each model in detail.

1) Basic Model The basic COCOMO model
estimates the software development effort using only
Lines of Code. Various equations in this model are -

E = a, (KLOO)"
D = C,(E)%
P = ED

Where E is the effort applied in person-months.

D is the development time in chronological months.
KLOC means kilo line of code for the project.

P is total number of persons required to accomplish
the project.

The coefficients ay, by, ¢}, d, for three modes are as
given below.

Software projects ay, by Ch dy

Organic 24 1.05 25 0.38

Semi-tietached 3.0 1.12 25 0.35

Embedded 36 1.20 7 25 0.32
Table 4.4.1

Merits of basic COCOMO model

Basic COCOMO model is good for quick, early,
rough order of magnitude estimates of software
project.

Limitations of basic model

1. The accuracy of this model is limited because it
does not consider certain factors for cost
estimation of software. These factors are
hardware constraints, personal quality, and
experience, modern tachniques and tools.

2. The estimates of COCOMO model are within a
factor of 1.3 only 29 % of the time and within the
factor of 2 only 60 % of time,

Example

— Product attributes
» Required software reliability
» Size of application database
« Complexity of software

t»~ Hardware aftributes
« Run-time performance constraints
« Memory constrainis
« Volatility of virtual machine

drver « Computer turnabout time

attributes

— Personnel attnbutes
« Analyst capability
« Software engineer capability
« Applications expenence
« Virtual machine experience
« Programing language experience
—* Project attributes
» Use of software tools
« Applications of software
engineering methods
« Required development schedule

"‘g’ TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 4-9 Software Project Estimation

Consider a software project using semi-detached mode with 30,000 lines of code. We will obtain

estimation for this project as follows -

i) Effort estimation

E = ay (KLOC)®
ie. E = 3.0 (30)* where lines of code = 30000 = 30 KLOC
E = 135 person-month

ii) Duration estimation
D = Cy(E)%
= 25{135)%%
D = 14 months

iii) Persons estimation

P = ED
= 135/14
P = 10 persons approximately

2) Intermediate Model
This is an extension of Basic COCOMO model. This estimation model makes use of set of "Cost driver

attributes” to compute the cost of software.

Now these 15 attributes get a 6-point scale ranging from "very low" to "extra high". These ratings can

be viewed as

The effort multipliers for each cost driver attribute is as given in following table. The product of all
effort multipliers result in "Effort Adjustment Factor" (EAF).

Ratings

Cost drivers Very low Low Nominal High Very high Extra high

Product attributes

Required software reliability 0.75 0.88 1.00 115 1.40
Size of application database 0.94 1.00 1.08 1.16
Complexity of software 0.70 0.85 1.00 1.15 1.30 1.65

Hardware attributes

Run-time performance 1.00 111 1.30 1.66
constraints

Memory constraints 1.00 1.06 1.21 1.56
Volatility of virtual machine 0.87 1.00 1.15 1.30

Computer turnabout time 0.87 1.00 1.07 .15

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 4-10 Software Project Estimation

Personnel attributes

Analyst capability 1.46 1.19 1.00 0.86 0.71
Software engineer capability 1.42 1.17 1.00 0.86 0.70
Applications experience 1.29 1.13 1.00 0.91 0.82
Virtual machine experience 1.21 L10 1.00 0.90
Progr'amming language 1.14 1.07 1.00 0.95
experience

Project attributes

Use of software tools 1.24 1.10 1.00 0.91 0.82
Applications of software 1.24 1.10 1.00 0.91 0.83
engineering methods

Required development 1.23 1.08 1.00 1.04 1.10
schedule

Table 4.4.2
The formula for effort calculation can be -

E = a; (KLOC)bi - EAF person-months

The values for a, and b, for various class of software projects are -

Software project a; b,
Organic 3.2 1.05
Semi-detached 3.0 1.12
Embedded 28 120

Table 4.4.3
The duration and person estimate is same as in basic COCOMO model. i.e.

D = cg (H)db months 1.e. use values of ¢ and dw coefficients that are in Table 4.4.1

P = E/D persons

Merits of Intermediate Model

1. This model can be applied to almost entire software product for easy and rough cost estimation
during early stage.

2. It can also be applied at the software product component level for obtaining more accurate cost

estimation.
Limitations of Intermediate Model
1. The estimation is within 20 % of actual 68 % of the time.
2. The effort multipliers are not dependent on phases.
3. A product with many components is difficult to estimate.
Example

Consider a project having 30,000 lines of code which is an embedded software with critical area hence
realiability is high. The estimation can be

TECHNICAL PUBLICATIONS - An up thrust for knowledge

f122

e

Software Engincering 4-

70%

Software Project Estimation

E = a; (KLOC)® .EAF
As reliability is high, EAF = 1.15 (product attribute)

;: i 122?) } for embedded software
. E =2.830)% %115
= 191 person-month
D = ¢, (E)% =2.5 (191)%3?
= 13 months approximately
P = ED
= 191/13
P = 15 persons approximately

3) Detailed COCOMO Model

The detailed model uses the same equations for
estimation as the Intermediate Model. But detailed
model can estimate the effort (E), duration (D) and

persons (P) of each of development phases,
subsystems, modules.
The experimentation with different development

strategies is allowed in this model.

Four phases used in detailed COCOMO model are -
1. Requirements planning and product design (RPD)
2. Detailed design (DD)

3. Code and unit test (CUT)

4. Integrate and test (IT)

The effort multipliers for detailed COCOMO are

Phases)Y Low Nominal High :fg’hy
RPD 180 085 100 075 055
DD 135 08 100 09 075
CUT 135 08 100 09 075

I 15 120 100 08 070

Using these detailed cost drivers, an estimate is
determined for each phase of the lifecycle.

TECHNICAL PUBLICATIONS

cocomoll

COCOMO 1T is applied
development practices addressed for the projects in
1990’s and 2000's.

for modern software

The sub-models of COCOMOQO Il model are —

1. Application composition model
» For estimating the efforts required
prototyping projects and the projects in which the

for the

existing software are used

application-composition model is introduced.

components

¢ The estimation in this model is based the
number of application points. The application points

are similar to the object points.

on

« This estimation is based on the level of difficulty of
object points.
Boehm has suggested the object point productivity
in the following manner.

Developers Very Low Nominal High Very
experience low high
and capability
CASE Very Low Nominal High Very
maturity low high
Productivity 4 7 13 25 50
(NOP/Month)

» Effort computation in application-composition model
can be done as follows -

PM = (NAP(‘I—QH-YEUS?/'IOO)) / PROD

where

PM means effort required in terms of
person-months.
NAP means number of application
points required.
% reuse indicates the amount of reused
components in the project. These
reusable components can be screens,
reports or the modules used in
previous projects.
PROD is the object point productivity.
These values are given in the above
table.

" An up thrust for knowledge

Software Engineering 4-

Software Project Estimation

2. An early design model

» This model is used in the early stage of the project
development. That is after gathering the user
requirements and before the project development
actually starts, this model 1is wused. Hence
approximate cost estimation can be made in this
model.

» The estimation can be made based on the functional
points.

« In early stage of development different ways of
implementing user requirements can be estimated.

» The effort estimation (in terms of person month) in
this model can be made using the following
formula :

Effort = Ax size® x M

where

Boehm has proposed the value of coefficient
A =294

Size should be in terms of Kilo Source Lines Of
Code 1.e. KSLOC. The lines of code can be
computed with the help of function point.

The value of B is varying from 1.1 to 1.24 and
depends upon the project.

M is based on the characteristics such as
Product reliability and complexity (RCPX)
Reuse required (RUSE)

Platform difficulty (PDIF)

Personnel capability (PERS)

g w N

Personnel experience (PREX)
6. Schedule (SCED)
7. Support facilities (FCIL)

These characteristics values can be computed on the
following scale -

1 6

l | | | | J
Very Very
lows high

« Hence the effort estimation can be given as

PM = 2.94x size® x M

M = RUSE x PDIF x PERS x PREXx SCED x FCIL

3. A reuse model

This model considers the systems that have

significant amount of code which is reused from the

earlier software systems. The estimation made in
reuse model is nothing but the efforts required to
integrated the reused models into the new systems.

e There are two types of reusable codes : black box
code and white box code. The black box code is a
kind of code which is simply integrated with the
new system without modifying it. The white box
code is a kind of code that has to be modified to
some extent before integrating it with the new
system, and then only it can work correctly.

There is third category of code which is used in
reuse model and it is the code which can be
generated automatically. In this form of reuse the
standard templates are integrated in the generator.
To these generators, the system model is given as
input from which some additional information
about the system is taken and the code can be
generated using the templates.

 The efforts required for automatically the generated
code is

PM = (ASLOC x AT/100)/ATPROD
where
AT is percentage of automatically generated code.

ATPROD is the productivity of engineers in

estimating such code

» Sometimes in the reuse model some white box code
is used along with the newly developed code. The
size estimate of newly developed code is equivalent
to the reused code. Following formula is used to
calculate the effort in such a case -

e ESLOC = ASLOC x (1-AT/100) X AAM
where

ESLOC means equivalent number of lines of new
source code.

ASLOC means the source lines of code in the
component that has to be adapted.

AAM is adaptation Adjustment multiplier. This factor
is used to take into account the efforts required to
reuse the code.

? TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Project Estimation

4. Post architecture model

o T

his model is a detailed model used to compute the

efforts. The basic formula used in this model is

e In this model efforts should be

Effort = Ax Size®PxM

estimated more

accurately. In the above formula A is the amount of

code. This code size estimate is made with the help
of three components —

1

. The estimate about new lines of code that is
added in the program.

2. Equivalent number of source lines of code
(ESLOC) used in reuse model.
3. Due to changes in requirements the lines of

code get modified. The estimate of amount of
code being modified.

The exponent term B has three possible values that

are
val

related to the levels of project complexity. The
ues of B are continuous rather than discrete. It

depends upon the five scale factors. These scale

factors vary from very low to extra high (i.e. from

5 to 0).
¢ These factors are —
Scale factor for Descitoion
component B o
Precedentedness This factor is for previous

Development flexibility

experience of organisation,
Very low means no previous
experience and high means
the organisation knows the
application domain.

Flexibility in development
process. Very low means the
typical process is used. Extra
high means client is
responsible for defining the
process goals.

Architecture/risk Amount of risk that is

resolution allowed to carry out. Very
low means little risk analysis
is permitted and extra high
means high risk analysis is
made,

e

Team cohesion

Process maturity

Represents the working

environment of the team.
Very low cohesion means
poor communication or
interaction between the team
members and extra high
means there is no
communication problem and
team can work in a good
spirit.

This factor affects the process
maturity of the organisation.
This value can be computed
using Capacity Maturity
Model (CMM) questionnaire,
for computing the estimates
CMM maturity level can be
subtracted from 5.

« Add up all these rating and then whatever value
you get, divide it by 100. Then add the resultant

value to 1.01 to get the exponent value.

e This model makes use of 17 cost attributes instead

of seven. These attributes are used to adjust initial

estimate.

Cost attribute

Type of attribute

Purpose

RELY

CPLX

DATA

DOCU

RUSE

Product

Product

Product

Product

Product

System reliability
that is required

Complexity of
system modules

Size of the data
used from
database

Some amount of
documentation

used

Percentage of
reusable
components

TIME

PVOL

Computer

Computer

Amount of time
required for
execution

Volatility of

development
platform

STOR

Computer

Memory
constraint

ACAP

Personnel

Project analyst’s
capability to
analyse the
project

A TECHNICAL PUBLICATIONS - An up thrust for knowledge

14 Software Project Estimation

Software Engineering 4-
PCAP Personnel Programmer
capability
PCON Personnel Personnel
continuity
PEXP Personnel Programmer’s

experience in
project domain

LTEX Personnel Experience of
languages and
tools that are
used

AEXP Personal Analyst’s
experience in
project domain.

TOOL Project Use of software
tools

SCED Project Project schedule
compression

SITE Project Quality of
inter-site and
multi-site
working

Ex. 4.5.1 Using COCOMO, estimate time reguirved for
the following :

1) A semi-detached model of software project of 2000 lines.
2) An embedded model of software of 30,000 lines.

3) An organic model of software of one lakh lines.

4) An erganic model of software of 10 lakh lines.

Sol. : To estimate time using basic model of
COCOMO following formula can be used.

E = a,(KLOC)®
where E is the effort in person-month.
D = ¢, (E)%

where D is development time in chronological
months.

P = ED

where P is total number of persons involved in the
project. The constants are

System ap b, Cp dy

Organic system 24 1.05 25 0.38

Semidetached system 3.0 1.12 25 0.35

Embedded system 3.6 1.20 25 0.32

1) Given that, System = Semi detached
Lines of code = 2000 lines = 2 KLOC

E = a,(KLOC)®
E=30Q"
E = 6.65 person-month
D = ¢(E)%
D = 4.8 months
P = E/D
P = 13 =1 person

Thus 1 person can handle this project within
approximately 5 months.

2) Given that, System = Embedded
Lines of code = 30,000 lines = 30 KLOC
E = a,(KLOC)®
= 3.6(30)%

|

E = 213 person - month
D = c,(E)%
= 2.5(213)"32
D = 14 months
P = ED
= 213/14

= 15 persons.
That means 15 persons can complete this project
within approximately 14 months.

3) Given that, System = Organic

Lines of code 1 lakh = 100 KLOC

E

a,(KLOC)®b
= 2.4 (100)%»

E = 302 person-month

D = ¢,(E)% =25 (302)03%
= 21 months

P = E/D

= 302/21

= 14 persons.

“"g’ TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 4-

Software Project Estimation

That means this project can be completed within 21
months by 14 persons, approximately,

4) Given that, System Organic

10 lakh = 1000 KLOC

]

Lines of code

E = a,(KLOC)"
= 2.4 (1000)0
= 3390 person - month
D = ¢,(E)%
= 2.5(3390)%3%
= 55 months
P = ED
= 3390/55

= 61 persons

This project can be completed within 55 months by
61 people approximately.

4.6

Risk Management
MSBTE : MSBTE : Summer-15, 16, 17, 18, Winter-15, 16

Definition of risk : The risk denotes the uncertainty
that may occur in the choices due to past actions and
risk is something which causes heavy losses.

Definition of risk management : Risk management
refers to the process of making decisions based on an
evaluation of the factors that threats to the business.

Various activities that are carried out for risk

management are -
1. Risk identification 2. Risk projection

3. Risk refinement

4. Risk mitigation, monitoring and management.

Software Risks

There are two characteristics of the risks

1. The risk may or may not happen. It shows the
uncertainty of the risks.

2. When risks occur, unwanted consequences or
losses will occur.

Different types of risk
1. Project risk

Project risks arise in the software development
process then they affect budget,
schedule, staffing, resources, and requirements.
When project risks become severe then the total

basically

cost of project gets increased.
2. Technical risk

These risks affect quality and timeliness of the
project. If technical risks become reality then
interface,
problems

potential design implementation,

verification and maintenance gets
created. Technical risks occur when problem

becomes harder to solve.
3. Business risk

When feasibility of software product is in suspect
then business risks occur, Business risks can be

further categorized as

i) Market risk - When a quality software product
is built but if there is no customer for this
product then it is called market risk (i.e. no
market for the product).

ii) Strategic risk - When a product is built and if
it is not following the company’s business
policies then such a product brings strategic
risks.

iii) Sales risk - When a product is built but how
to sell is not clear then such a situation brings
sales risk.

iv) Management risk - When senior management
or the responsible staff leaves the organization
then management risk occurs.

v) Budget risk - Losing the overall budget of the
project is called budget risk.

-

=

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 4-

Software Project Estimation

1 |

Project risk

Technical risk

Business risk
== Market risk

—= Strategic risk
—= Sales risk

= Management risk

— Budget risk

Fig. 4.6.1 Categorization of risk

Another categorization of risk proposed by Charette

15 -

Known risks are those risk that are identified after
evaluating the project plan. These risks can also be
identified from other sources such as environment in
which the product gets developed, unrealistic dead
lines, poor requirement specification and software
scope. There are two types of known risks -
predictable and unpredictable risks.

— Predictable risks

Known risks —

— Unpredictable risks

Fig. 4.6.2

Predictable risks are those risks that can be identified
in advance based on past project experience. For
example : Experienced and skilled staff leaving in
between or improper communication with customer
resulting in poor requirement specification.

Unpredictable risks are those risks that can not be
guessed earlier,

For example certain changes in Government policies
may affect the business project.

Risk Identification

Risk identification can be defined as the efforts
taken to specify threats to the project plan. Risks
identification can be done by identifying the known
and predictable risks.

The risk identification is based on two approaches

1. Generic risk identification - It includes potential
threat identification to software project.

2. Product-specific risk identification - It includes
product specific threat identification by

understanding people, technology and working

environment in which the product gets built.

Normally the risk identification is done by the project
manager who follows following steps -

Step 1 : Preparation of risk item check list

The risk items can be identified using following
known and predictable components

i) Product size - The risk items based on overall
size of the software product is identified.

ii) Business impact - Risk items related to the
marketplace or management can be predicted.

iii) Customer characteristics - Risks associated with
customer-developer ~communication can be
identified.

iv) Process definition - Risks that get raised with the
definition of software process. This category
exposes important risks items because whichever

ggg TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 4-

Software Project Estimation

is the process definition made, is then followed
by the whole team.

v) Development environment - The risks associated
with the technology and tool being used for
developing the product.

vi) Staff size and experience - Once the technology
and tool related risks items are identified it is
essential to identify the risk associated with
sufficient highly experienced and skilled staff
who will do the development.

vii) Technology to be built - complexity of the system
should be understood and related risk items
needs to be identified.

After preparing a risk item checklist a questionnaire
is prepared. These set of questions should be
answered and based on these answers the impact or
seriousness of particular risk item can be judged.

Step 2
list.

Creating risk components and drivers

The set of risk components and drivers list is
prepared along with their probability of occurrence.
Then their impact on the project can be analysed.

Let us understand which are the risk components and
drivers.

Risk Projection

The risk projection is also called risk estimation.

There are two ways by which risk can be rated

|
' l

Probability that the risk is real Consequences of problems associatec
with the nisk

Fig. 4.6.3

The project planner, technical staff, project manager

performs following steps to perform following steps

for risk projection -

« Establish a scale that indicates the probability of
risk being real.

« Enlist the consequences of the risk.

» Estimate the impact of the risk on the project and
product.

» Maintain the overall accuracy of the risk projection
in order to have clear understanding of the software
that is to be built.

These steps help to prioritize the risks. Once the risks
are prioritized then it becomes easy to allocate the

resources for handling them.

Risk Assessment

« Risk
planning,.

assessment is

done

during the project

« In this phase the risks are identified, analysed and
then prioritized on the basis of analysis.

» The risk assessment is done throughout the project.
It is most needed at the starting phases of project.

« The goal of the risk assessment is to prioritize the

risks that require an attention.

Risk identification
« Risk

identification is the first step in risk

assessment, which identifies all the different risks

for a particular project.

« Various methods that can be used to identify the

risks are -

© Preparing checklists for identifying the risks,

@ Conducting surveys and meetings,

9 Having brainstorming sessions,

© Reviewing of
products.

plans,

processes, and

work

« Based on the surveys, Bohem has produced a list of
top 10 risks items. This list helps in identifying the

risks in the project.

Sr.

No Risk Item Management Technique
1. Personnel Shortfall Training the people,
recruiting top talent
people, Key personnel
agreement.
2, Unrealistic schedule Detailed schedule and
or budget. cost estimation, Software

3. Developing wrong
functions.

reuse.

Making user survey,
understanding the
concepts, adopting
prototyping techniques.

4. Gold Plating i.e.
adding features to the
project.

5. Developing wrong
user interface.

Reviewing the
requirements,

~ prototyping.

Performing prototyping,
task analysis

o0

? TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 4-

Software Project Estimation

Incremental
development.

6. Requirement changes
occur frequently.

7. Shortfalls in externally Reference checking,
done tasks. auditing, prototyping.
8. Shortfall in externally ~ Reference checking and
developed inspections.
components.
9 Real-time performance Simulation, modelling,
shortfalls. prototyping.
10. Straining computer Technical analysis,

knowledge capability. reference checking,

prototyping.
» Apart from preparing a checklist, other methods of
risk identification are decision driver analysis,
assumption analysis and decomposition.

e In decision driver analysis technique, there is
questioning and analyzing of all the major decisions
taken for the project. If the decisions are driven by
some non technical factors such as politics or
marketing then the probability of occurrence of risk
is very high.

» For identifying the risks assumptions about the
project are compared with the pat experiences of
the project.

» In decomposition technique the large project is
broken down into small parts and analysis is made
in order to identify the risks.

» The next task after risk identification is risk analysis
and prioritization.

Risk Analysis

« Risk analysis is the process in which probability of
occurrence of risk and the corresponding losses are
estimated.

«If cost models are used for cost and schedule
estimation, then the same models can be used to
assess the cost and schedule risk. For example
COCOMO model can be used for to analyse the

cost and schedule risks.

e Risk analysis can be done by estimating the
worst-case value of size and all the cost drivers.
From these values the project cost can be estimated.
This will give us the worst-case analysis. Then
using the worst-case effort estimate,

worst-case schedule can easily be obtained.

the

« Another approach

analysis of various things like -

of risk analysis is making

@ Qutcome of various decisions(Decision analysis)
© Risks on various factors such as reliability and
usability(quality factor analysis)

9 Performance constraints(performance analysis).

Risk Prioritization

o After risk analysis the impact of each risk on the
project can be analysed. Based on this impact risks
can be prioritised.

» Risk exposure computing is done for prioritising
the risks. Risk exposure is also called as risk
impact.

e The risk exposure can be calculated by following
formula,

Risk Exposure = Probability of occurrence of risk

*Loss due to unsatisfactory outcome

e Thus risk exposure for each risk from risk table is
calculated. The total risk exposure of all risks helps
in determining the final cost of the project.

Risk Containment

« Risk containment means reduction of risk.

e The project manager and team will be able to
identify strategies to minimize or eliminate the risk
factors.

» For example - If a project is facing high risk due to
lack of experience in development platform, then
the recruiter or hiring expert contractor can control
this risk by hiring the skilled and experienced
employee for the desired project.

o Lot of high risk factors can be eliminated or
reduced during the risk assessment.

RMMM Strategy

RMMM stands for risk mitigation, monitoring and
management. There are three issues in strategy for

handling the risk is
1. Risk avoidance 2. Risk monitoring

3. Risk management.

-

TECHNICAL PUBLICATIONS - An up thrust for knowiedge

Software Engineering 4-

Risk mitigation

Risk mitigation means preventing the risks to

occur(risk avoidance). Following are the steps to be

taken for mitigating the risks.

1. Communicate with the concerned staff to find of
probable risk.

o

Find out and eliminate all those causes that can
create risk before the project starts.

3. Develop a policy in an organization which will
help to continue the project even though some
staff leaves the organization.

4. Everybody in the project team should be
acquainted with the current development activity.

5. Maintain the corresponding documents in timely
manner. This documentation should be strictly as
per the standards set by the organization.

6. Conduct timely reviews in order to speed up the
work.

7. For conducting every critical activity during
software development, provide the additional
staff if required.

Risk monitoring

In risk monitoring process following things must be

monitored by the project manager,

1. The approach or the behaviour of the team
members as pressure of project varies.

2. The degree in which the team performs with the
spirit of “team-work”.

3. The type of co-operation among the team
members.

4. The types of problems that are occurring.

5. Availability of jobs within and outside the
organization.

The project manager should monitor certain

mitigation steps. For example.

If the current development activity is monitored

continuously then everybody in the team will get
acquainted with current development activity.

The objective of risk monitoring is

1. To check whether the predicted risks really occur
or not.

Software Project Estimation

2. To ensure the steps defined to avoid the risk are
applied properly or not.

3. To gather the information which can be useful
for analyzing the risk.

Risk management

Project manager performs this task when risk
becomes a reality. If project manager is successful in
applying the project mitigation effectively then it
becomes very much easy to manage the risks.

For example, consider a scenario that many people
are leaving the organization then if sufficient
additional staff is available, if current development
activity is known to everybody in the team, if latest
and systematic documentation is available then any
‘new comer’ «can easily understand current
development activity. This will ultimately help in

continuing the work without any interval.

Board Questions
1. What is risk projection ? Enlist steps of risk
MSBTE : Summer-15, Marks 4
Describe RMMM strategy in detail.
MSBTE : Summer-15,Winter-15, Marks 4 ||

projection.

N

3. What is software risk ? Explain types of software
risks. MSBTE : Summer-16, Marks 4 |
4. Describe the following with respect to Risk
assessnient :
i) Risk identification

iii) Risk prioritization

it) Risk analysis
MSBTE : Winter-16, Marks 8 |
5. Explain following terms w.r.t. risk management :
i) Risk identification i) Risk analysis
MSBTE : Summer-17, Marks 4
6. Enlist and explain different types of Software
Risks. (four points)

MSBTE : Summer-18, Marks 4 |

Qaaa

‘?’ TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 4-20 Software Project Estimation

Notes

TECHNICAL PUBLICATIONS - An up thrust for knowledge

o»g]

UNIT- V

Software Quality Assurance
and Security

E Project Scheduling

MSBTE : Winter-15, 16, 17, Summer-15, 16, 17, Marks 4

Definition
estimated efforts are distributed across the planned
allocating effort specific

Project scheduling is an activity the

project duration by to

software engineering tasks.

In project the scheduling can be done using two
simple activities -

1. Determining overall schedule by using different
important milestones.

2. Developing detailed schedule for different tasks.
Basic Principle

Following are basic principles used in project
scheduling -

(1) Compartmentalization : The project is partitioned

or compartmentalized into number of activities,

actions and tasks.

(2) Interdependency : The interdependency of each
compartmentalized activity, task and action must be
determined. Some tasks execute in sequence and
some might execute in parallel.

(3) Time Allocation : For each scheduled task, some
number of work units must be allocated. The start
date and end date of each allocated task must be

specified.

(4) Effort Validation The number of people
allocated for the scheduled tasks must be validated
by the project manager.

(5) Defined Responsibilities
scheduled

Every task that is

should be assigned to specific team

member.

(6) Defined Outcomes :
have definite outcome.

Every scheduled task must

5-1

(7) Defined Milestones : Every task or group of tasks
should be associated with a project milestone,

Work Breakdown Structure

« Work breakdown Structure(WBS) is a process of
dividing the simpler and
manageable tasks.

complex projects to
«In WBS, the large tasks are broken down into
manageable chunks of work. These chunks can be
easily examined and analysed.

» The project manager is responsible for creation of
WBS.

Construction of Work Breakdown Structure

(1) The first step in creation of work breakdown
structure is to identify the main deliverable of
the project.

(2)

Then the high level tasks are identified and they
are broken down into smaller chunks of work.

(3)

In the process of breaking down the tasks, one
can break them down into different levels of
detail. One can detail a high-level task into ten
sub-tasks while another can detail the same
high-level task into 20 sub-tasks. Thus there is no
standard rule for breaking down of task into
chunks. In general there is a simple rule is that -
The smallest tasks of WBS is should not be

smaller than two weeks worth of work.

Another rule is - no task should be smaller than 8
hours of work and should not be larger than 80
hours of work.

(4) There are many forms of displaying the work
breakdown structure - it can be in tree like form,
table or list form. For example -

Softﬁ»r\'niruiEnginccrirjg 5-2 Su[t\f'qrg Q‘,‘“,!i‘-‘;"t\‘f""",‘,“‘ .117\1.!775&”-C|.|r!tj\;77
Project
Task 1 Task 2 Task 3
Sub task 1.1 Sub task 1.2 Sub task 1.3

Work package 1.1.1 I [Work package 1.1.2 I I Work package 1.1.3 |

Fig. 5.1.1 Work breakdown structure in tree form

Example of WBS : The work breakdown structure for a simple product development is as shown

below -
1.4 (a)
Technical 1.6 (a)
risks Implementstion
St L5 o o
cking Scoping the »| Product Proof of Integrate a,b
feasibility product planning product
of product
e / \ o /
\ Technical Implementation
risks
'
1.7
Customer
feedback

Fig. 5.1.2 Work breakdown structure in tree form

Activity Network and Critical Path Method

Bar charts and activity networks are graphical representation of project schedule. The beginning and
end of the activity, responsible staff for corresponding activity is shown by bar chart.

Activity network show dependencies between different activities. There are some automating project

management tools using which bar chart and activity network can be generated. These tools require

database of project information as an input.

Ex. 5.1.1 Consider, some hypothetical tasks, duration and dependencies. Draw the activity network and find the critical
pn”l.

Task Duration Dependencies

T1 10

i v) 15 T1(M1)

‘?‘ TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering

T3
T4
T5
T6
T7
T8
T9

T10

10

12

TI(M2)

T1,T2(M3)
TI(M1)
T4,T5(M4)
T6(M6)
T7(M5)
T TSM?)
TY(M8)

Software Quality Assurance and Security

Sol. : The T1, T2, ... represent various tasks. The milestones of various tasks is shown by M1, M2, ... The activity

network for these activities can be as shown below.

T1

&

T6

T5 (w2)

&

Fig. 5.1.3 Activity network

T3

(END)_T10

The minimum amount of time required by the project can be computing the longest possible path to
reach from begin to end. This path is referred as the critical path in the project and the activities along

this path are referred as the critical activities. In Fig. 5.1.3 critical path is shown by thick edge.

Ex. 5.1.2 For a software project different activities and their durations are listed as below. Draw the activity network and

find the critical path.

Task T T T
Duration 8 15 15
(in days)

Dependencies - - 5

5.1y

T 2
5 20
5.1 L

T Tho T Tz

15 15 7 10

LT | T Ty T

e 2 TECHNICAL PUBLICATIONS - An up thrust for knowledge
o

bf 122

— | e | 70% :
Software Engineering 5-4 Software Quality Assurance and Security
Sol. :
8 days 15 days 20 days 15 days \
Ty T, Tz Tio
15 days 5 days 15 days 7 days 10 days
(START)— T, Tg Tg T Ti2
10 days 10 days
END
T, Ts
25 days
Tg

Fig. 5.1.4 Activity chart

A thick line denotes the critical path. A critical path
is a longest possible path which starts from the
beginning and reaches at the end and which requires
minimum amount of time.

Scheduling Techniques

e There are two commonly
techniques - PERT and CPM.

e« The PERT stands for Project management and
Review Technique. This technique is used for the

used scheduling

projects where time needed to complete different
activities are not known.

e« The CPM stands for Critical Path Method. This
technique is used in conjunction with PERT and is
used for managing the well defined activities of the
project.

» The PERT and CPM technique is used for -

@ Prediction of deliverables.

© Planning resource requirements

@ Controlling resource allocation

© Internal and external program review
9 Performance evaluation

« Various framework activities in PERT/CPM are -
© Define the project. The project should have

single start activity and single finish activity.
© Develop relationships among the activities.

9 Draw the network diagram for connecting all
the activities.

T

TECHNICAL PUBLICATIONS

© Assign time and cost to each activity.
@ Compute critical path.
© Use network to help plan, schedule, monitor

and control the project.
» Example -

e The formula used in PERT to calculate number of
working days is based on three point estimate.

* The three point estimates are optimistic, most likely
and pessimistic estimates.

» Formula is

PERT weighted average
Optimistic time+ 4 x Most likely time

+ Pessimistic time

6
» Example : Given that
Optimistic time = 6 days
Most likely time = 9 days
Pessimistic time = 12 days

then
6+(4x9)+12 _
6
 Thus it would be 9 days using PERT.
* The main advantage of PERT is that it attempts to
address the risk associated with duration estimates.

PERT weighted average = 9

“- An up thrust for knowledge

Software Engineering

wn

wm

Software Quality Assurance and Security

Difference between PERT and CPM

Sr.

No. PERT

CPM

CPM is a statistical
technique of project
management that
manages well defined
activities.

b PERT is a project
management technique
used to manage
uncertain activities of
project.

A method to control
cost and time.

2. This technique of
planning and control of

time.
3. This technique is event This technique is
oriented. activity oriented.
4. It is non repetitive in It is repetitive in
nature. nature,

Board Questions
1. List four basic principles of project scheduling.
MSBTE : Summer-15,16, Winter-15, Marks 4
Differentiate between PERT and CPM.
MSBTE : Summer-15, Winter-16, 17, Marks 4
3. With an example, explain how CPM and PERT
are useful in software project management.
MSBTE : Winter-15, Marks 4
4. What is the concept of task network ?
MSBTE : Summer-17, Marks 4
Write meaning of PERT and CPM.
MSBTE : Summer-17, Marks 4
6. What is project scheduling ?

MSBTE : Winter-17, Marks 4

N

()

@ Project Tracking

MSBTE : Winter-17, Summer-16, 18, Marks 8

« Project schedule is the most important factor for
software project manager. It is the duty of project
manager to decide the project schedule and track
the schedule.

» Tracking the schedule means determine the tasks
and milestones in the project as it proceeds.

the various activities conducted
during tracking of the project schedule -

1. Conduct this meeting

various problems related to the project get
discussed. The progress of the project is reported

« Following are

periodic meetings. In

to the project manager.

-

TECHNICAL PUBLICATIONS

2. Evaluate results of all the project reviews.

3. Compare ‘actual start date’ and 'scheduled start
date’ of each of the project task.

4. Determine if the milestones of the project is
achieved on scheduled date.

5. Meet informally the software practioners. This
will help the project manager to solve many
problems. This meeting will also be helpful for
assessing the project progress.

6. Assess the progress of the project quantitatively.

» Thus for tracking the schedule of the project the
project manager should be an experienced person.
In fact project manager is the only responsible
person who is controlling the software project.

« When some problems occur in the project then
addition resources may be demanded, skilled and
experienced staff may be employed or project
schedule can be redefined.

Time Line Chart (Gantt Chart)

« In software project scheduling the timeline chart is
created. The purpose to
emphasize the scope of individual task. Hence set of
tasks are given as input to the time line chart.

of timeline chart 1is

« The time line chart is also called as Gant chart.

¢ The time line chart can be developed for entire
project or it can be developed for individual
functions.

¢ In time line chart

1) All the tasks are listed at the leftmost column.

2) The horizontal bars indicate the time required by

the corresponding task.

3) When multiple horizontal bars occur at the same

time on the calendar, then that means
concurrency can be applied for performing the
tasks.

4) The diamonds indicate the milestones.

« In most of the projects, after generation of time line
chart the project tables are prepared. In project
tables all the tasks are listed along with actual start
and end dates and related information.

"~ An up thrust for knowledge

Software Engineering 5-6 Software Quality Assurance and Security

Example

Sept. Oct. Nov. Dec. Jan.
Task

. 2 Software development '\
. 2. 1 Requirements analysis
. 2. 2 Architectural design

. 2. 3 Procedural design
.2.4Code

. 3 Testing

. 3. 1 Unit test \
. 3. 2 Integration test
. 3. 3 Acceptance test
. 4 Operations — -
. 4.1 Packaging Y Y
. 4. 2 Customer training

<

<<
< |
=

N o T N o N S o S N S

Fig. 5.2.1 Time line chart
Project table

Tasks Planned start Actual start Planned end Actual end Effort assignment

Requirement analysis 6" Sept'05 6" Sept'05 20 Sept'05 227 Sept’5 Jayashree, Padma, Lucky
Architectural design 27 Sept05 27 Sept'05 3 Oct’05 7t Oct’05 Trupti, Varsha

Procedural design 10t Oct’05 12t Oct’05 24% Oct’05 25% Oct’05 Varsha, Sachin, Devendra

Customer training 1# Jan'06 4t Jan'06 22 Jan'06 25% Jan'06 Smita, Yogita

Earned Value Analysis

« The Farned Value Analysis (EVA) takes into consideration the project context for planned and actual

expenditure.
« This analysis is made to find out project scope, schedule and resource characteristics.
» The EVA acts as a measure for software project progress.

« Various measures are determined during EVA. These measures are -

1) Planned Value (PV) : It denotes the planned cost of the work. The planned value is developed by
first determining all of the work, that must be accomplished for successful project result.

2) Actual Cost (AQ) : It represents the actual amount that the business has to expend on the project.
AC = 2 Efforts expended on work task that have been completed by time t.

3) Earned Value (EV) : It is project manager’s estimate of the amount of originally budgeted work
completed.

4) Budget At Completion (BAC) : It represents total budget for the project.

5) Schedule Variance (SV) : It indicates the status of the schedule. It represents whether work is

ahead or behind the plan. If SV is negative the project is behind schedule, if it is positive then
project is ahead of schedule. If SV is equal to zero, then project is on schedule.

? TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering

=1
~1

Software Quality Assurance and Security

6) Cost Variance (CV) : It is the difference between
earned value and actual cost.

If CV

"

0 then project is on budget.
If CV < 0 then project is over budget

If CV > 0 then project is under budget

7) Schedule Performance Index (SPI) : It is a
measure of schedule efficiency on a project. If
SPI= 1.0, project is on schedule.

If SPI is greater than 1 then project is ahead of
the schedule.

IF SPI is less than 1 then project is getting
delayed and it is behind the schedule.

8) Cost Performance Index (CPI) : It is a measure
of cost efficiency on a project. The value 1.0
represents that project is within the given budget.
If CPI < 1.0 then that means project is over
budgeted.

If CPI > 1.0 then that means project is under
budgeted and we require most cost to
accomplish the project.

Formula used during (EVA) :

PV = Planned Completion (%)

= Budget At Completion (BAC)
EV = Actual Completion (%)* BAC
SV = EV-PV
CV = EV-AC
SPI = EV/PV
CPI = EV/AC

Ex. 5.2.1 Mr. Koushan is the preject manager on a
project to build a new cricket stadinm in Mumbai, India.
After six months of work, the project is 27 % complete. At
the start of the project, Koushan estinated that it would
cost § 50,000.000, What is the Earned value ?

Sol. : The formula for Earned value is -

Earned value = % of work x Budget

27 % = 50000

o 22 50000 = 13, 500
= 100 %> =13, 5

.. The earned value is $ 13,500

Board Questions
1. List different ways in which the project schedule
MSBTE : Summer-16, Marks 4

What is project scheduling and tracking ? State

can be tracked.

N

four reasons why project deadlines cannot be
met ? MSBTE : Summer-16, Marks 8
3. Explain the concept of Gantt chart.
MSBTE : Winter-17, Marks 4

4. Explain different activities done to track the

sqﬂuwrc. MSBTE : Summer-18, Marks 4

Software Quality Management Vs.
Software Quality Assurance
« Definition of Quality The International
Organization for Standardization (ISO) defines
quality as the totality of characteristics of an entity
that bear on its ability to satisfy stated or implied
needs.
 The project quality management is a process which
ensures that the project will satisfy the needs for
which it was undertaken.
» The main principle of project quality management is
to ensure the project will meet or exceed
stakeholder's needs and expectations.

» The project team must develop a good relationship
with key stakeholders.

» The project quality management is performed using
following three key processes.

1. Planning Quality Management
2. Performing Quality Assurance

3. Controlling Quality

I Quality Management]

Planning Quality Quality Controlling
Management Assurance Quality

? TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Quality Assurance and Security

Phases of Software Quality Assurance

MSBTE : Winter-16, 17, Summer-15, 16, 17, 18, Marks 8

» Definition of quality assurance :

It is planned and

systematic pattern of activities necessary to provide

a high degree of confidence in the quality of a

product. It provides quality assessment of the
quality control activities and determines the validity
of the data or procedures for determining quality.

» The quality assurance consists of set of reporting
and auditing functions.

e These functions are useful for assessing and
controlling the effectiveness and completeness of
quality control activities.

» The goal of quality assurance is to ensure the
management of data which is important for product

quality.

Statistical Quality Assurance

« Statistical software quality assurance is a simple
concept that changes in the
software can be made in order to improve those

which represents

elements of the process that introduce error.

» Statistical software quality can be

performed with the help of following steps -

assurance

1. Collect the information about software defects.
Categorize them.

2. Make an attempt to trace each defect to its root
cause.

3. Isolate the vital few causes of the major source
of all errors by using the 80-20 principle(known
as Pareto principle). This principle is “80 % of
the defects can be traced to 20 % of all possible
causes”.

4. Then move to correct the problems that have
caused the defects

Defects occurred
during software
development process

Collection of defects
occurs at two stages

Defects occurred after
delivering the product
o end - user

Fig. 5.4.1

Software Quality Assurance Activities

Let us list out the SQA activities conducted by SQA
group.

1. Create a SQA plan.

A SQA plan is developed while planning the project.

Quality assurance activities are conducted that are

indicated in this plan. This plan basically

« Identifies evaluations to be performed.

» Audits and reviews to be performed, standards that
should be adopted for the project.

« Procedures for error reporting and tracking.

o It also specifies documents to be produced by SQA
group.

« Amount of feedback provided to
project team,

the software

2. Participates in description of software process.

The process the software
reviewed by the SQA group. This review is for

selected by team is

¢ Process description to ensure that it follows the
organizational policy.

Software Quality Assurance (SQA) tasks are associated with

Software engineers
(Responsible for developing
the product)

SQA group
(Responsible for performing
quality assurance planning,

oversight, record keeping,
analysis and reporting)

Fig. 5.4.2

A TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering

Software Quality Assurance and Security

« Internal software standards.

* Some standards that are adopted by the
organization.

3. Reviews software engineering activities.

The SQA group identifies and documents the
processes. The group also verifies the correctness of
software process.

4. Authenticate
products.

designated software work

The SQA group performs following tasks -

« Reviews selected work product

« Identifies the process

» Documents them

« Tracks deviations

» Verifies the correctness made in the processes

» Regular reporting of results of its work to the
project manager.

5. Ensure the deviations in software work.

Document work products

The deviations in software work are identified from
project plan. These processes are identified and
handled according to documented procedure.

6. Identify any noncompliance and reports to
senior management.

Non compliance items are identified and pursued
until they get resolved. The periodic reporting about
it is done to project manager.

Board Questions
1. What steps are requived to perform statistical
SQA ? MSBTE : Summer-15, Marks 4
2. What is Software Quality Assurance ? What are
the activities carried out in SQA.
MSBTE : Summer-16, Marks 4
3. List various activities of SQA.
MSBTE : Summer-17, Marks 4

4. What is Quality Assurance ? Describe various

SQA activities. MSBTE : Winter-16, Marks 8

5. Explain about software quality assurance.

6. Prepare any four software quality assurance
guidelines and describe them.
MSBTE : Summer-18, Marks 4

5.5 | Software Quality Control

MSBTE : Summer-17, Marks 4

Quality control is a process in which activities are
conducted in order to maintain the quality of
product. These activities are series of inspections,
reviews and tests used throughout the software
process. These activities ensure whether each work
product is satisfying the requirements imposed on
it.

While applying the quality control there should be a
feedback loop to the process which generates the
work product. With the help of such feedback we
can tune the process if it does not satisfy the
requirements. The feedback loop helps in

minimizing the defects in the software product.

The quality control activities can be fully automated
or it can be completely manual or it can be a
combination of automated tools and manual
procedures.

Board Question

1. What is quality control ? |

5.6 | Quality Evaluation Standards

MSBTE : Winter-15, 16, 17, Summer-15, 16, 17, 18, Marks 8

Six Sigma

Six sigma is widely used statistical software quality
assurance strategy. It is a business driven approach to
process improvement, reduced costs and increased
profit. The word “six sigma” is derived from six
standard deviations - 3.4 defects per million
occurrences. Six Sigma originated at Motorola in the
early 1980s.

There are three core steps in six sigma method -

Define - The customer requirements, project goals
and deliverables are defined by communicating the
customers.

Measure - The existing process and its output is
measured in order to determine current quality

MSBTE : Winter-17, Marks 4 perform:mce.
= TECHNICAL PUBLIGATIONS - An up thrust for knowledge

Software Engineering

5-10

Software Quality Assurance and Security

Measure

Define

Analyze

Improve

Control

Fig. 5.6.1 Six sigma framework

Analyze - In this phase defect metrics are analyzed in
order to determine the few causes.

If an improvement is needed to an existing software
then there are additional two methods in six sigma -

Improve - By eliminating the root causes of defects
the process can be improved.

Control - The process can be controlled in such a
way that the defects can not be
reintroduced.

causes of

These steps can sometimes be referred as DMAIC.

For a newly developing software, some organizations
are suggesting following two alternating steps -

Design - In this step avoid root causes of defects and
meet the customer requirements.

Verify - To verify the process, avoid defects and
meet customer requirements.

These steps can sometimes be referred as DMADV.

ISO for Software

« In order to bring quality in the product and service,

many organizations are adopting the quality
assurance system.

e The quality assurance systems are the organizational
structures that are used to

responsibilities, procedures, processes and resources.

bring quality in

« ISO 9000 is a family of qualify assurance system. It
can be applied to all types of organizations. It
doesn’t matter what size they are or what they do.
It can help both product and service oriented
organizations to achieve standards of quality.

« ISO 9000 is maintained by ISO, the International
Organization for i
administered by

Standardization and s
accreditation and certification
bodies.

«In ISO 9000, company’s quality
operations are scrutinized by third-party auditors

system and

for a complaince to the standard and effective

T

operation. This process is called registration to ISO
9000.

On successful registration, the company gets a
certification from accreditation bodies of 1SO. Such a
company is then called “ISO certified company”.

ISO 9001:2000 is a quality assurance standard which
is applied to software engineering systems.
It focuses on process flows, customer satisfaction,

and the continual improvement of quality

management systems.

ISO 9001:2000 specifies requirements for a quality

system that can be applied to any size or type of

organization.

The guideline steps for ISO 9001:2000 are

© Establish quality management system - Identify
and manage the processes in the quality
management system.

9 Document the quality management system
© Support the quality

© Satisfy the custonters

© Establish quality policy

@ Conduct quality planning

© Control quality systems

@ Perform management reviews

© Provide quality resources

© Provide quality personnel

© Provide quality imfrastructure

© Provide quality environment

o Control realization planning

© Control customer processes

@ Centrol product development

© Control purchasing functions

9 Control operational activities

© Ceontrol monitoring devices

@ Centrol non confirming products

© Analyze quality information

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 5-

Software Quality Assurance and Security

© Make quality improvement

e The 1SO 9000 helps in
quality manuals. These quality manuals identify the
organisational quality processes.

creating organisational

» Using these quality manuals, the project quality
plan can be prepared for every individual project.
Thus project quality management can be done.

This is illustrated by following Fig. 5.6.2,

1SO 9000 quality
model
L Converted to
Organisational Defines Organisational
quality manuals quality process
Projectn
quality plan Works
Creates Project 3 for
quality plan
- Project 2 : >
F Project quality
RUENY P management
Project 1
quality plan

Supports

Fig. 5.6.2 ISO 9000 helps in quality management

cMMI

e The (SEI)
developed a comprehensive process meta-model

Software Engineering Institute has
emphasizing process maturity. It is predicated on a
set of system and software capabilities that should
be present when organizations reach different levels
of process capability and maturity.

» The Capability Maturity Model (CMM) is used in

assessing how well an organization’s processes

allow to complete and manage new software
projects.
« Various process maturity levels are
Level 1 : Initial - Few processes are defined and
individual efforts are taken.
Level 2 : Repeatable - To track cost schedule and
functionality =~ basic project management
processes are established. Depending on earlier
successes of projects with similar applications
necessary process discipline can be repeated.

Level 3 : Defined - The process is standardized,
documented and followed. All the projects use
documented and approved version of software
process which is useful in developing and
supporting software.

Level 4 : Managed - Both the software process and
product quantitatively
controlled using detailed measures.

are understood and

Level 5 : Optimizing - Establish mechanisms to
plan and implement change. Innovative ideas
and technologies can be tested.

Thus CMM is used for improving the software

project.

Comparison between 1SO and SEI CMM Models

Sr. No. ISO CMM

13 ISO 9001 addresses In CMM, emphasis is
minimum criteria for on continuous process
an acceptable quality improvement.
system.

2, ISO 9001 focuses on CMM focuses strictly
hardware, software, on software.
processed material
and services,

3. The basis of I1SO 9001 The basis of CMM is :
is : "Say what you do "Say what you do and
and do what you do what you say™.
say.

4. Servicing activities are CMM does not have
considered as separate maintenance as a
maintenance process separate process.
in ISO.

5. ISO 9001 maintains a ~ The CMM emphasizes
quality record the need to record
document which information for later
clearly shows whether use in the process and
or not required for improvement of
quality is achieved. the process.

This document also
indicates whether or
not existing quality
system operates
effectively.

A TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Quality Assurance and Security

Repeatable

Fig. 5.6.3

Board Questions
1. Describe six sigma for software engineering.
MSBTE : Summer-15,18, Marks 4
2. Explain CMMI niodel with neat diagram.
MSBTE : Summer-15,Marks 8
3. Give the outline that defines basic elements of 1SO
9001 : 2000 for software quality assurance.
MSBTE : Winter-15, Marks 4
4. What is six sigma ? Describes the core steps of
DMAIC in detail.
What is CMMI ? State two objectives of CMMI.
Briefly explain the CMMI maturity levels.
6. Explain CMMI with its levels and neat diagram.

MSBTE : Winter-16, Marks 4

What is philosophy of six signa ? Explain six

D

~

sigma strategies. MSBTE : Summer-17, Marks 8
8. Describe six sigma for software engineering.
MSBTE : Winter-17, Marks 4
9. State eight benefit of ISO standards.
MSBTE : Winter-17, Marks 4
10.Explain different levels of Capability Maturity
Model Integration technigue. (CMMI)
MSBTE : Summer-18, Marks 8

5.7 | Software Security

Software security is a concept which is implemented
to protect software against malicious attack and other
hacker risks so that the software continues to function
correctly under such potential risks.

-

==
]

By software the integrity,

authentication and availability is provided to the

providing security -

software system.

Basic Principles of Software Security
1. Protection from disclosure

2. Protection from alteration

3. Protection from destruction
4. Who is making the request
5. What rights and privileges does the requester

have
6. Ability to build historical evidence

7. Management of configuration, sessions and

errors/exceptions

5.8 | Introduction to DEVOPs

Definition Devops is a practice in which

development and

together

operation engineers participate

in entire lifecycle activities of system
development from design, implementation to product
support.

e The term Devops is
DEVelopment "

OPerationS".

« Devops promotes a set of processes and methods
the three department IT
operations and Quality assurance that communicate
and of

derived from "Software

and ‘information technology

from Development,

collaborate together for development

software system.

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 5-13 Software Quality Assurance and Security
2. Fast delivery of product.
3. Lower failure rate of new releases.
Quality
BEveAOPncES assurance 4. Shortened lead time between fixes.
%g 5. Faster mean time to recovery.
6. Increases net profit of organization.
7. To standardize development environment.
Devops)
2 8. To reduce work in progress.
Operations
9. To reduce operating expenses.
Fig. 5.8.1 10. To set up automated environment.
Need for DEVOPs e
* Devops enhances the organization's performance, Various benefits of Devops are -
improves the productivity and efficiency of « Technical Benefits
Gevelopoitand: Gphiations (sams; 1. Continuous software delivery is possible
» Bringing the two teams together centralizes the 4 :
& g R il 5 53 2. There is less complexity to manage the
responsibility on the entire team and not specific .
L . project.
individuals working,.
.) ¢+ The problems in the project gets resolved faster.
» Devops is more than just a tool or a process change. :
It inherently requires an organizational culture shift. » Cultural benefits
oprs . ’ 1. The productivity of teams get increased.
« This cultural change is especially difficult, because F) ¢) y SIS e
of the conflicting nature of departmental roles : 2. There is higher employee engagement.
1. Operations - seeks organizational stability; 3. There arise greater professional development
opportunities.
2. Developers - seek change; « Business benefits
3. Testers - seek risk reduction. 1. The faster delivery of the product is possible.
» Adoption of Devops is driven by various factors. 2. The operating environment becomes stable.
Theee faptors e~ 3. The communication and collaboration gets
1. Demand for an increased rate of production improved among the teams members and
releases - from application and business unit customer.
stakeholders. 4. More time is available for innovation rather
2. Increased usage of data center automation and than fixing and maintaining.
configuration management tools.
3. Use of agile and other development processes 5.9 | Secure Software Engineering
and methods. o Secure Software engineering is concerned with
4. Increased focus on test automation and developing and maintaining software systems that
continuous integration methods. behave reliably and efficiently by satisfying all the
5. Wide availability of virtualized and cloud requirements: of its:customers.
infrastructure. » The secure software -
(1) prevents loss of data.
Goals)
(2) prevents premature leaks of data.
The Goals of Devops are as follows -)
(3) Prevents downtime of resources.
1. To make simple processes increasing
programmable and dynamic.
? TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 5-14

Software Quality Assurance and Security

Secure Software Engineering Life Cylce

* A Software Development Life Cycle (SDLC) is a
framework that defines used by
organizations to build an application. Over the
years, multiple standard SDLC models have been
proposed (Waterfall, Iterative, Agile, etc.) and used

the process

in various ways to fit individual circumstances.
e In general, SDLCs include the following phases:
1. Planning and requirements.
2. Architecture and design.
3. Test planning.
4. Coding.

S)I

Testing and results.

6. Release and maintenance.

e In the past, it was common practice to perform
security-related activities only as part of testing.
This technique usually resulted in a high number of
issues discovered too late.

« It is better to integrate security concerning activities
across the SDLC to help discover and reduce
vulnerabilities early, effectively building security in.

« A Secure SDLC process ensures that
assurance activities such as penetration testing, code

security

review, and architecture analysis are an integral
part of the development effort.

¢ The advantages of
development Life cycle is -
(1) More

continuous concern.

primar_\;' secure software

secure software as security is a

(2) Awareness of security considerations by
stakeholders.

(3) Early detection of flaws in the system.

(4) Cost reduction as a result of early detection
and resolution of issues.

(5) Overall reduction of business risks for the

organization.

aaa

*‘g’ TECHNICAL PUBLICATIONS - An up thrust for knowledge

SUMMER - 2015

Software Engineering
Semester - IV (Civil) (21415)

Solved Paper

Time : 3 Hours]

Note :

Q1

Q.2

Q3

Q4

a)
b)
c)

d)

)

a)

b)

c)

d)

a)

b)

d)

e)

a)

1) All questions are compulsory.

2) Answer each next main question on a new page.

3) Illustrate your answers with neat sketches wherever necessary.

4) Figures to the right indicate full marks.
5) Assume suitable data, if necessary.

Answer any five of the following :

Explain software engineering as a layered technology approach.

Enlist core principles of software engineering practice.

Describe data objects and data atfributes,
List four objectives of testing.

List four basic principles of project scheduling.

What steps are required to perform statistical SQA ?

State any four attributes of a good software.

Answer any four of the following :

Differentiate between waterfall model and incremental model.

What is SRS ?

Write importance of analysis modeling.
State eight characteristics of software bugs.
Enlist the features of SCM.

Describe six sigma for software engineering.

Answer any four of the following :

What do you mean by process framework ? Explain with suitable diagram.

Write four drawback of RAD model.
Explain deployment principle.
What are the characteristics of good design ?

Differentiate befween validation and verification.

What is risk projection ? Enlist steps of risk projection.

Answer any four of the following :

Explain different decomposition techniques.

S-1)

[Total Marks :

100

20

16

16

16

Software Engineering S-2 Solved Board Question Papers
b) Describe integration tesling.
c) What is DFD ? Explain level 1 DFD with exanple.
d) Explain cardinality and modality with example.
e) Explain spiral model with neat diagram.
f) Describe Agile process models in detail.
Q.5 Answer any fwo of the following : 16
a) Describe eight principles of good planning.
b) With neat diagram explain translation of analysis model into design model.
c) Explain CMMI model with neat diagram.
Q.6 Answer any four of the following : 16
a) Compare PSP and TSP.
b) List seven tusk of requirement engineering.
c) Differentiate belween alpha and beta testing.
d) Compare while box and black box testing.
e) Describe RMMM strategy in delail.
f) Differentiate between PERT and CPM.
WINTER - 2015
Software Engineering Solved Paper
Semester - IV (Civil) (15116)
Time : 3 Hours]| [Total Marks : 100
Note : 1) All questions are compulsory.
2) Illustrate your answers with neat sketches wherever necessary.
3) Figures to the right indicate full marks.
4) Assume suitable data, if necessary.
5) Preferably write the answers in sequential order.
Q.1 A) Attempt any THREE of the following : 12
a) Describe the characteristics of software.
b) Briefly explain software engineering as a layered technology.
c) With reference to requirement engineering, explain
i) Inception and ii) Elicitation
d) With reference to software design give the meanings of
i) Modularity i) Functional independence iii) Refactoring iv) Information hiding
? TECHNIGAL PUBLIGATIONS - An up thrust for knowledge

f122

- 4 70% -
Software Engineering S-3 Solved Board Question Papers
b) Answer any ONE of the following : 6
i) With a neat diagram, explain the nature and general steps of spiral model. Also give its advantages and

disadvantages.ii)Explain the various elentents of analysis niodeling in detail.
Q.2 Answer any four of the following : 16
a) Define PSP and TSP. Give advantages of TSP.
b) Explain the features of Agile software development approach.
c) In which situation RAD model is applicable ? Give its advantages and disadvantages.
d) Describe the principles of deployment.
e) Explain PSPEC with an example.
f) Draw level 'O and level 'I' DFD for library management system. Make suitable assumptions.
Q.3 Attempt any FOUR of the following : 16
a) Explain the basic process framework activities.
b) Briefly describe the principles of communication.
c) Briefly describe the principles of coding.
d) With a neat diagram explain analysis nodel.
e) Explain domain analysis with a neat diagran.
f) Explain unit testing.
Q4 A) Attempt any THREE of the following : (12)
a) Differentiate between alpha-testing and beta-testing.
b) Describe the following debugging strategies :
i) Brute force i) Back tracking
c) With an example, explain how CPM and PERT are useful in software project management.
d) Give the outline that defines basic elements of ISO 9001 : 2000 for software quality assurance.
B) Answer any ONE : 6
a) Explain the basic principles of project scheduling.
b) Explain the McCall's Quality factors.
Q.5 Answer any TWO of the following : 16
a) Explain the core principles of software engineering in detail.
b) Explain in detail RMMM strategy.
c) What is six sigma ? Describes the core steps of DMAIC in detail.
Q.6 Answer any FOUR of the following : 16
a) Explain white box festing.
b) Explain Top-Down integration testing.
c) Describe the attributes of a good test.
d) Why do the software projects fail ? Give reasons.

? TECHNICAL PUBLICATIONS™ - An up thrust for knowledge

Software Engineering S-4 Solved Board Question Papers

e) Describe the four elements of software configuration management system.
SUMMER - 2016
Software Engineering Solved Paper
Semester - IV (Civil) (15162)
Time : 3 Hours] [Total Marks : 100
Note : 1) All questions are compulsory.
2) Answer each next main question on a new page.
3) lllustrate your answers with neat sketches wherever necessary.
4) Figures to the right indicate full marks.
5) Assume suitable data, if necessary.
Q.1 A) Attempt any three of the following : 12
a) Define software. State three characteristics of software.
b) What is software coding ? State three principles of code validation.
c) Describe the terms : Analysis Modeling and Design Modeling.
d) Differentiate between Prescriptive Process Modell and Agile Process Model (any four points).
Q. B) Attempt any one of the following : 6
a) Describe the layered technology approach of Software Engineering.
b) Draw a dataflow diagram level (0 and level 1 for a Book Publishing House.
Q.2 Attempt any four of the following : 16
a) Define the terms software process, software product, software work product and software engineering.
b) What is SRS ? Explain importance of SRS.
c) What is domain analysis ? Explain with suitable examples.
d) Describe the relationship between systems engineering and software engineering.
e) Draw a use case diagram for a Bank Management System.
f) What is Waterfall Model ? State the practical situations in which it can be used,
Q.3 Attempt any four of the following : 16
a) State and explain any four types of software.
b) What is Requirements Elicitation ? What are the problems faced in eliciting requirements ?
c) Explain the importance of SRS.
d) What is Data Modeling ? Explain the terms cardinality and modality.
e) Draw a use case diagram for music systent.

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering 5-5 Solved Board Question Papers
Q.4 A) Attempt any three of the following : 16
a) What aspects of the software are tested in Unit Testing ?
b) State any four basic principles to be followed for project scheduling.
c) Define the terms : Software Reliability and Software Availabiliy.
d) Compare Alpha Testing and Beta Testing.
Q.4 B) Attempt any one of the following : 6
a) What are the activities involved in SCM ?
b) What is Software Quality Assurance ? What are the activities carried out in SQA.
Q.5 Attempt any two of the following : 16
a) What is Software deployment 7 State the principles to be followed while preparing to deliver the software
increment.
b) What is project scheduling and tracking ? State four reasons why project deadlines cannot be met ?
c) What is CMMI ? State two objectives of CMMI. Briefly explain the CMMI maturity levels.
Q.6 Attempt any four of the following : 16
a) Compare top - down and bottom - up approach used for integrating testing.
b) Describe different debugging strategies.
c) Wiat is software risk ? Explain types of software risks.
d) List different ways in which the project schedule can be tracked.
e) Compare software verification and software validation.
WINTER - 2016
Software Engineering Solved Paper
Semester - IV (Civil) (16117)
Time : 3 Hours] [Total Marks : 100
Note : 1) All questions are compulsory.
2) Answer each next main question on a new page.
3) IMlustrate your answers with neat sketches wherever necessary.
4) Figures to the right indicate full marks.
5) Assume suitable data, if necessary.
6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in
Examination Hall.
Q.1 A) Answer any three of the following : 12

a) Describe any four categories of software.
b) State and describe six principles of communication practices.

? TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering S-6 Solved Board Question Papers

c) With neat diagram, describe inputs and output of domain analysis.

d) Write any four features of Agile Software Development approach.

B) Answer any one of the following : 6
a) With neat diagram, explain RAD inodel with its advantages and disadvantages. (2 each)

b) Draw DFD level 0 and level 1 for Hotel management system.

Q.2 Answer any four of the following : 16
a) Explain process framework with suitable diagran.
b) Describe in brief four level testing process in test execution.
c) Differentiate between cardinality and modality. (Any four points)
d) Differentiate between waterfall and incremental model. (any four points)
e) Explain following with reference to design concepts in design modeling.i) Abstractionii) Functional independence
f) Explain software engineering as a layered technology approach with neat diagram.
Q.3 Answer any four of the following : 16
a) Describe Team Software Process (TSP) model in detail.
b) Describe dour principles of analysis modeling.
c) Explain general format of Software Requirement Specification (SRS).
d) Describe Data Dictionary. Write any four advantages.
e) Explain :i)) Component - level design elementsii) Deployntent level design elementswith respect to design model.
Q.4 A) Answer any three of the following : 12
a) What do you mean by testing strategies ?
b) Explain basic principles of project planning.
c) Write steps to perform statistical SQA.
d) Explain smoke testing with its advantages and disadvantages (2 each).
Q.4 B) Answer any one of the following : 4
a) Explain CPM. How is it different from PERT ?
b) Explain CMMI with its levels and neat diagram.
Q.5 Answer any two of the following : 16
a) State and describe various core principles of software engineering.
b) Describe the following with respect to Risk assessment :
i) Risk identification i) Risk analysis iii) Risk prioritization
c) What is Quality Assurance ? Describe various SQA activities.
Q.6 Answer any four of the following : 16

a) Differentiate between verification and validation.

b) Explain Brute force approaches used in debugging strategies.

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering

|
~

Solved Board Question Papers

c) Explain any four features of SCM.
d) Explain the following management spectrum :
i) The Process i) The Project
e) Describe white box and black box testing of software.
SUMMER - 2017
Software Engineering Solved Paper
Semester - IV (Civil) (16172)
Time : 3 Hours] |Total Marks : 100
Note : 1) All questions are compulsory.
2) Answer each next main question on a new page.
3) Ilustrate your answers with neat sketches wherever necessary.
4) Figures to the right indicate full marks.
5) Assume suitable data, if necessary.
6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in
Examination Hall.
Q.1 Attempt any five of the following : 20
a) What is software ? What is embedded software ?
b) Explain the term scrum.
c) List core principle of Software Engineering.
d) Write importance of analysis modeling.
e) List various testing characteristics.
f) Wihat is change control 2.
g) List various activities of SQA.
Q.2 Attempt any four of the following : 16
a) What is quality control ?
b) Explain following terms w.r.t. risk management :
i) Risk identification i) Risk analysis
c) Describe debugging process.
d) Compare cardinality and modality.
e) Explain essence of practice.
f) What do you mean by process framework ? Explain with suitable diagram.
Q.3 Attempt any four of the following : 16
a) Explain software engineering as a layered approach.
o TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering S-8

Solved Board Question Papers

b)

c)

d)

e)

f)
Q.4

a)
b)
c)
Q.6
a)
b)
c)
d)

e)

Explain following requiremenls engineering tasks :

i) Negotiation ii) Specification

What is DFD ? Explain its symbol.

How can project scheduling affect infegration testing ?
What is the concept of task network ?

Explain SCM in short.
Attempt any four of the following :

Give possible reasons of why software is delivered late.
Explain test case design in detail.

Explain scenario based modeling in detail.

What is meant by software deployment ?

What is SRS ?

What is agile process ?

Attempt any two of the following :

Explain RAD model with its advantages and disadvantages.
Describe in detail eight principles of good planning.

What is philesophy of six sigma ? Explain six sigma strategies.
Attempt any four of the following :

Write meaning of PERT and CPM.

Explain the steps of bottom up integration.

List the objective of black box testing.

For library management system draw level 0 and level 1 DFD.
What are the characteristics of good design ?

State advantages of PSP and TSP.

16

16

16

WINTER - 2017

Software Engineering
Semester - IV (Civil) (11718)

Solved Paper

Time : 3 Hours]

Note :

1) All questions are compulsory.

2) Answer each next main question on a new page.

3) Illustrate your answers with neat sketches wherever necessary.
4) Figures to the right indicate full marks.

5) Assume suitable data, if necessary.

TECHNICAL PUBLICATIONS - An up thrust for knowledge

[Total Marks : 100

itwarc Enginetring ik Splvkc PaandCueation Fapery:
Q.1 Answer any five of the following : 20
a) Explain changing nature of software.
b) What are communication principles ? Explain their meaning.
c) List four objectives of testing.
d) Explain briefly unit testing.
e) What is alpha - beta testing ?
f) Describe six sigma for software engineering.
g) Explain analysis modeling.
Q.2 Answer any four of the following : 16
a) Explain the waterfall model.
b) Explain modeling practice in software engineering with principles.
c) What do you mean by good test 7
d) Describe integration testing approach.
e) Explain Mccalls quality factor.
f) What is an object oriented analysis ?
Q.3 Answer any four of the following : 16
a) Difference between prescriptive and agile process model.
b) Describe any two core principles of software engineering.
c) What is fest plan ?
d) Describe regression festing.
e) Explain modality with the help of example.
f) What is SPM ? Why is it needed ?
Q4 Answer any four of the following : 16
a) Explain the concept of software requirement specification.
b) Explain characteristics of software festing.
c) Slate eight benefit of ISO standards.
d) Explain DFD with example.
e) Explain the concept of Gantt chart.
f) Explain CPM. How is it different from pert ?
Q.5 Answer any two of the following : 16
a) Wihat is software ? What are its characteristics ?
b) What are major task of requirement engineering ?
c) Explain the term debugging. Explain different debugging.

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering S-10 Solved Board Question Papers

Q.6 Answer any four of the following : 16
a) Explain Deployment principle .
b) Differentiate between wvalidation and verification.
c) Explain about software quality assurance.
d) Describe behavioral model.
e) What is project scheduling ?
f) Explain SCM.
SUMMER - 2018
Software Engineering Solved Paper
Semester - IV (Civil) (21718)
Time : 3 Hours] [Total Marks : 100
Note : 1) All questions are compulsory.
2) Answer each next main question on a new page.
3) lllustrate your answers with neat sketches wherever necessary.
4) Figures to the right indicate full marks.
5) Assume suitable data, if necessary.
6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in
Examination Hall.
Q.1 a) Attempt any three of the following : 12
i) Define management spectrum and enlist characteristics of software.
i) Draw stub and driver mechanism of unit testing and enlist various types of errors delected by unit testing.
iiiy Describe five steps for successfulness of project.
iv) Draw the neat labeled diagram of spiral model and list two disadvantages of spiral model,
Q.1 b) Attempt any one of the following : 6
i) Elaborate any six types of software considering the changing nature.
ii) Draw and explain level 0 and level 1 Dataflow diagram for "Online examination Winl7 of form filling on
MSBTE website”.
Q.2 Attempt any four of the following : 16
a) Elaborate the software characteristic "Software does not wear out”.
b) List and explain three principles of analysis modeling.
¢) Draw the usecase diagram for taking "photocopy of ansbooks from msbte” website.
d) Enlist advantages and disadvantages of smoke testing. (four points)
e) Enlist and explain different types of Software Risks. (four points)

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering S-11 Solved Board Question Papers

f) Explain qualities of software considering :
i) Quality of design i) Quality of conformance
Q.3 Attempt any four of the following : 16
a) Give difference between waterfall model and incremental model. (four points)
b) Explain following requirements of engineering fasks :
i) Negotiation 11) Validation
c) Explain Architectural Design Elements.
d) State eight characteristics of software bugs.
e) Explain the functions of Software Configuration Management repository. (SCM)
Q4 a) Attempt any three of the following : 12
i) Explain the testing concept with its Testing Principles. (any four principles)
i) Compare Bottom - up integration testing and top - down integration software testing. (four points)
i) Explain the factors that Delay Project Schedule.
iv) Explain the six sigma for software engineering.
b) Attempt any one of the following : 6
i) List and explain five framework activities defined in PSP (Personal software process).
ii) Explain 4 P's software project spectrum.
Q.5 Attempt any two of the following : 16
a) Draw the behavioral analysis model for small hospital management system and illustrate the working of it.
b) List and explain the elements of analysis model with neat labeled diagram.
c) Explain different levels of Capability Maturity Model Integration technigue. (CMMI)
Q.6 Attempt any four of the following : 16
a) Explain principles of planning practices in software engineering (any four)
b) Explain input and output of domain analysis.
c) Define white box testing and black box testing with its need and characteristics. (fwo points)
d) Explain different activities done to track the software.
e) Prepare any four software quality assurance guidelines and describe them.

QaQ

TECHNICAL PUBLICATIONS - An up thrust for knowledge

bf 122

- 4 0% -

Solved Sample Test Paper - |

Software Engineering

S.Y. Diploma Semester - IV (Computer Engineering Group & Information Technology) (CO/CM/IF/CW)

Q.1

Q.2

(a)
(b)
(c)
(d)
(e)
(f)

(a)
(b)
(c)
(d)
(e)
(f)

Time : 1 Hour]

Instructions :

(1) All questions are compulsory.

(2) Mustrate your answers with neat sketches wherever necessary.

(3) Figures to the right indicate full marks.

(4) Assume suitable data if necessary.

(5) Preferably, write the answers.

Attempt Any Four.

What is application software ? (Refer section 1.4(2))

Give any two advantages of RAD model. (Refer section 1.7.1.2)

Explain the concepi of agile process in brief. (Refer section 1.8)

What is the meaning of the term software elicitation ? (Refer section 2.8.2)
What is use case ? (Refer section 2.11)

What are the elements of analysis model 7 (Refer section 3.2)

Attempt any THREE.

List and explain any four attributes of a good software. (Refer section 1.1)
Explain waterfall model in detail. (Refer section 1.7.1.1)

Explain functional and non functional requirements. (Refer section 2.9)

What is SRS ? Explain its importance. (Refer section 2.13)

Explain the concept of cohesion and coupling in software design. (Refer section 3.3.1(7))

Give any four rules used during data flow design. (Refer section 3.4.1.1)

[Total Marks : 20

2]

Solved Sample Test Paper - 11

Software Engineering

S.Y. Diploma Semester - IV (Computer Engineering Group & Information Technology) (CO/CM/IF/CW)

Q.1

(a)
(b)
(c)

Time : 1 Hour]

Attempt Any Four.
Enlist four P’s in management spectrum. (Refer section 4.1)
Give any two causes of software project failure. (Refer section 4.1.4)

Explain the term - functional point. (Refer section 4.2.2)

(S-1

[Total Marks : 20

(8]

Software Engineering S-

Q.2

(d)
(e)
()

(a)
(b)
(c)
(d)
(e)
()

5]

Solved Sample Test Papers

What are three commonly used cost estimation approaches used in software projects ? (Refer section 4.3)
Explain - work break down structure. (Refer section 5.1.2)

Give the full forms of PERT and CPM. (Refer section 5.1.4)

Attempt any THREE. [12]
Explain LOC based estimation method. (Refer section 4.2.1)

Enlist and explain different fypes of software risks (Four Points). (Refer section 4.6.1)

Explain the term risk mitigation. (Refer section 4.6.6)

List four basic principles of project scheduling. (Refer section 5.1.4)

Write short note on - Earned Value Analysis. (Refer section 5.2.2)

What are steps required to perform statistical SQA 7 (Refer section 5.4)

Qo

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Solved Sample Question Paper
Software Engineering

S.Y. Diploma Semester - |V (Computer Engineering Group & Information Technology) (CO/CM/IF/CW)

Time : 3 Hours] [Total Marks : 70

Instructions :

Q1

Q.2

Q3

Q.4

(a)
(b)
(c)
(d)
(e)
(f)
(9)

(a)
(b)
(c)
(d)

(a)
(b)

(c)
(d)

(a)
(b)
(c)
(d)

(1) All questions are compulsory.

(2) Mlustrate your answers with neat sketches wherever necessary.

(3) Figures to the right indicate full marks.

(4) Assume suitable data if necessary.

(5) Preferably, write the answers in sequential order.

Attempt Any FIVE of the Following : [10]
Define the terms - Seftware and Software engineering (Refer section 1.1)

State and explain any two types of software (Refer section 1.4)

List core principles of software engineering (Refer section 2.2)

What is data object? (Refer section 3.1.1.1)

What are two types of size estimation (Refer section 4.2)

Define the term- Risk (Refer section 4.6)

What is software quality assurance (Refer section 5.4)

Attempt Any THREE of the Following : [12]
Explain software engineering as a layered technology approach. (Refer section 1.2)

Explain the essence of soffware engineering practice (Refer section 2.1)

Explain cardinality and modality with example. (Refer section 3.1.2)

Prepare any four software quality assurance guidelines and describe them. (Refer section 5.4)

Attempt Any THREE of the Following : [12]
Give the difference between size oriented metrics and function oriented metrics. (Refer section 4.2.2)

Explain following with reference to design concepts in design modeling.

i) Abstraction ii) Functional independence (Refer section 3.3.1)

Explain deployment principle (Refer section 2.7)

Enlist basic principles of software security (Refer section 5.7)

Attempt Any THREE of the Following : [12]
Enlist various functional and non functional requirements for the bank ATM system (Refer example 2.9.1)
Elaborate the software characteristic: "Software is engineered, not manufactured ” (Refer section 1.3)

Explain 4 P’s software project spectrum (Refer section 4.1)

Write short note on - Unil festing (Refer section 3.5.3.1)

(S-3)

Software Engineering S-4 Solved Sample Model Question Paper

Q.5

Q.6

(a)
(b)
(c)

(a)
(b)
(c)

Attempt any TWO of the Following : [12]
Explain COCOMO estimation model in detail (Refer section 4.4)

Draw DFD level 0 and level 1 for Hotel Management System (Refer example 3.4.2)

Describe six sigma for software engineering (Refer section 5.6.1)

Attempt any TWO of the Following : [12]
What is DEVOPs ? Explain its needs and benefits of DEVOPs (Refer section 5.8)

Explain Risk management procedure in detail (Refer section 4.6)

What are major tasks of requirement engineering? (Refer section 2.8)

QQa

TECHNICAL PUBLICATIONS - An up thrust for knowledge

S.Y. Diploma Semester - IV (Computer Engg. Group & Information Technology)

SUMMER - 2019

Software Engineering Solved Paper

I - Scheme
(CO/CM/IF/CW) (21819)

Time : 3 Hours] [Total Marks : 70

Instructions :

Q1

Ans. :

Q.2

Q.3

a)
b)
c)

d)

e)

g)

b)

c)

d)

b)

1) All questions are compulsory.

2) Answer each next main question on a new page.

3) lllustrate your answers with neat sketches wherever necessary.

4) Assume suitable data if necessary.

5) Use of Non-programmable Electronic Pocket Calculator is permissible.

6) Mobile phone, pager and any other electronic communication devices are not permissible
in Examination Hall

7) Preferably, write the answers in sequential order.

Attempt any Five of the following : [10]

Enlist and explain software characteristics (any two) (Refer section 1.3)

Define software on engineering. (Refer section 1.1)

State need of Software Requirement Specification (SRS). (Refer section 2.14)

Define Reactive Risk strategies.

Reactive Risk Strategy is a strategy in which certain action occurs in response to the risk.

Specify following cost directives of cocomo : (Refer section 4.4)

i) Product attributes (any two) ii) Hardware attributes (any two).

Differentiate between software quality management and software quality assurance (any two points).

(Refer section 5.3)

Define software quality assurance. (Refer section 5.4)

Attempt any Three of the following : [12]
Explain software engineering as layered technology approach. (Refer section 1.2)

Explain with example decision table. (Refer section 3.4.3)

Explain following elements of management spectrun : (Refer section 4.1)

i) People ii) Process iii) Product iv) Project

List and explain basic principles of project scheduling. (Refer section 5.1.1)

Attempt any Three of the following : [12]
Distinguish between perspective process model and agile process model. (Refer section 1.8)

Describe any four principles of communication for software engineering. (Refer section 2.3)

(S-5)

Software Engineering

Solved Board Question Papers

c)

Ans. :

Q4

d)

a)
b)
c)

d)

Draw proper labeled “"LEVEL I Data Flow Diagram” (DFD) for student altendance system.

Student

Login
Student Student Attendance
Response System
Fig. 1 Level 0 DFD
Login 10 Check details
Login

Response Response

Submit query Check details

Attendance Je——
Response

Response

Submit query update
Response acknowledge
) Insert New
Submit query password
Response acknowledge

Fig. 2 Level 1 DFD

Student info

Attendance record

Leave record

Student Info

State importance of “Function Point (FP)" and “Lines of Cedes (LOC)” in concerned with project estimation.

(Refer section 4.2)

Attempt any Three of the following :

Describe extreme programming with proper diagram. (Refer section 1.8.2)

List and explain any “four core principles” of software engineering. (Refer section 2.2)

Explain RMMM plan with example. (Refer section 4.6)

Explain any one project cost estimation approach. (Refer section 4.3)

[12]

TECHNICAL PUBLICATIONS® - An up thrust for knowledge

Software Engineering 5-7 Solved Board Question Papers

e) Prepare time line chart for Library Managements System (five days a week) Consider phases of SDLC.
(Refer section 5.2.1)
Q.5 Attempt any Two of the following : [12]
a) Enlist Requirement Gathering and Analysis for web based project for registering candidates for contest {any six
poinls).
Ans. :
(1) The candidate must enter personal information for user name, and password, email_id.
(2) The system should validate his/her email_id.
(3) The system should sent the system generated user name and password to the user through his email.

(4) The system should sent the "Successful registration" message to the user. If the registration gets failed the
system should send the appropriate message to the user and it should consider such candidate as invalid.

(5) The candidate must be able to log-in with the user name and password.

(6) If the user forgets the password, the system should provide the assistance to the candidate with the help of
his/her authorized email-id

b) Differentiate between White box and Black box testing (any six points). (Refer section 3.5.2)
c) Describe Co-Como 11 model for evaluating size of software project with any three parameters in detail.
(Refer section 4.6)
Q.6 Attempt any Two of the following : [12]
a) Draw and explain transition diagram from requivement model to design model, (Refer section 5.3.1)
b) Describe CMMI. Give significance of each level. (Refer section 5.6.3)
c) Identify and enlist requirement for given modules of employee management software :
i) Employee defail i) Emplayee salary iit) Employee performance
Ans. : (i) Employee details
1. The employee details fields must be completely filled up by the employee.

2. The employee information must be validated and then the information is entered in the database.

(ii) Employee salary

1. The appropriate salary information must be entered in the employee database of employee management
software.

2. The salary must be non-negative and non-zero.

(iii) Employee performance
1. Employee performance record must be updated periodically in the employee management software.

2. On the lowering the performance, the employee should get the system generated notification.

Qaa

TECHNICAL PUBLICATIONS - An up thrust for knowledge

Software Engineering

|
@

Solved Board Question Papers

Notes

TEGHNICAL PUBLICATIONS” - An up thrust for knowledge

